|本期目录/Table of Contents|

[1]路亚琼综述,王晴净审校.DNA纳米技术在生物医学上的应用[J].医学研究与战创伤救治(原医学研究生学报),2018,20(03):281-284.[doi:10.3969/j.issn.1672-271X.2018.03.014]
点击复制

DNA纳米技术在生物医学上的应用()

《医学研究与战创伤救治》(原医学研究生学报)[ISSN:1672-271X/CN:32-1713/R]

卷:
第20卷
期数:
2018年03期
页码:
281-284
栏目:
综述
出版日期:
2018-05-09

文章信息/Info

Title:
-
作者:
路亚琼综述王晴净审校
作者单位:210005南京,南京军区南京总医院抄纸巷门诊部(路亚琼、王晴净)
Author(s):
-
关键词:
DNA 纳米技术 检测 治疗 生物仿生
Keywords:
-
分类号:
R9
DOI:
10.3969/j.issn.1672-271X.2018.03.014
文献标志码:
A
摘要:
可与多学科交叉发展的纳米技术,对生命医学领域的应用具有重大价值。DNA不仅是生命的密码,同时因其强大的编码能力和独特的理化性质,用作构建特定的DNA纳米结构和功能化的动态机器的基石。文章简单介绍了DNA纳米结构的发展,综述了DNA纳米技术在生物医学领域内检测诊断、载药治疗和医学仿生的应用,并对该学科的研究前景进行了展望。
Abstract:
-

参考文献/References:

[1]Ke Y, Lindsay S, Chang Y, et al. Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays [J]. Science, 2008, 319(5860): 180.
[2]Zhang Z, Wang Y, Fan C, et al. Asymmetric DNA Origami for Spatially Addressable and Index-Free Solution-Phase DNA Chips [J]. Adv Mater, 2010, 22(24): 2672-2675.
[3]Pei H, Lu N, Wen Y, et al. A DNA Nanostructure-based Biomolecular Probe Carrier Platform for Electrochemical Biosensing [J]. Adv Mater, 2010,22(42): 4754-4758.
[4]Pei H, Wan Y, Li J, et al. Regenerable electrochemical immunological sensing at DNA nanostructure-decorated gold surfaces[J]. Chemical Communications, 2011, 47(22): 6254-6256.
[5]Subramanian HKK, Chakraborty B, Sha R, et al. The Label-Free Unambiguous Detection and Symbolic Display of Single Nucleotide Polymorphisms on DNA Origami [J]. Nano Letters, 2011, 11(2): 910.
[6]Niemeyer CM, Wacker R, Adler M. Combination of DNA-directed immobilization and immuno-PCR: very sensitive antigen detection by means of self-assembled DNA-protein conjugates [J]. Nucleic Acids Res, 2003, 31(16): 90.
[7]Song S, Wang L, Li J, et al. Aptamer-based biosensors [J].Trac Trends in Analytical Chemistry, 2008, 27(2): 108-117.
[8]BingLeng, LeiZou, Mirkin CA, et al. Colorimetric Detection of Mercuric Ion (Hg 2+ ) in Aqueous Media using DNA-Functionalized Gold Nanoparticles [J].Angewandte Chemie, 2007, 119(22): 4171-4174.
[9]Mendoza O, Mergny JL, Aimé JP, et al.G-quadruplexes light up localized DNA circuits [J]. Nano Letters, 2015, 16(1).
[10]Saccà B, Meyer R, Erkelenz M, et al.Orthogonal protein decoration of DNA origami [J].Angew Chem Int Ed Engl, 2010, 7(22): 3211-3218.
[11]Jungmann R, Steinhauer C, Scheible M, et al. Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami [J].Nano Letters, 2010, 10(11): 4756-4761.
[12]Zhang K, Hao L, Hurst SJ, et al. Antibody-linked spherical nucleic acids for cellular targeting [J]. J Ame Chem Soc, 2012, 134(40): 16488-16491.
[13]Li J, Pei H, Zhu B, et al. Self-Assembled Multivalent DNA Nanostructures for Noninvasive Intracellular Delivery of Immunostimulatory CpG Oligonucleotides [J].Acs Nano, 2011, 5(11): 8783.
[14]Hintersteiner M,Auer M. Single-bead, single-molecule, single-cell fluorescence: technologies for drug screening and target validation [J].Ann N Y Acad Sci, 2008, 1130(1): 1-11.
[15]Lee H, Lytton-Jean AK, Chen Y, et al. Molecularly self-assembled nucleic acid nanoparticles for targeted in vivo siRNA delivery [J]. Nature Nanotechnology, 2012, 7(6): 389-393.
[16]Zhang Q, Jiang Q, Li N, et al. DNA origami as an in vivo drug delivery vehicle for cancer therapy [J].Acs Nano, 2014, 8(7): 6633.
[17]Schüller VJ, Heidegger S, Sandholzer N, et al.Cellular Immunostimulation by CpG-Sequence-Coated DNA Origami Structures [J]. Acs Nano 2011, 5(12): 9696-9702.
[18]Liu B, Ouyang X, Chao J, et al. Self-assembly of DNA Origami Using Rolling Circle Amplification Based DNA Nanoribbons [J].Chin Jo Chem, 2014, 32(2): 137-141.
[19]Chen G, Liu D, He C, et al. Enzymatic synthesis of periodic DNA nanoribbons for intracellular pH sensing and gene silencing [J]. J Ame Chem Soc, 2015, 137(11): 3844.
[20]Zhuang X, Ma X, Xue X, et al. A Photosensitizer-Loaded DNA Origami Nanosystem for Photodynamic Therapy [J].Acs Nano, 2016, 10(3): 3486.
[21]Jiang Q, Song C, Nangreave J, et al. DNA origami as a carrier for circumvention of drug resistance [J]. J Ame Chem Soc, 2012, 134(32): 13396.
[22]Fu J, Yan H. Controlled drug release by a nanorobot [J]. Nature Biotechnology, 2012, 30(5): 407.
[23] Douglas SM, Church GM. A logic-gated nanorobot for targeted transport of molecular payloads[J].Science, 2012, 335(6070): págs. 831-834.
[24]Nakata E, Liew FF, Uwatoko C, et al. Zinc-finger proteins for site-specific protein positioning on DNA-origami structures[J]. Angewandte Chemie International Edition, 2012, 51(10): 2421-2424.
[25]Shen W, Zhong H, Neff D, et al. NTA directed protein nanopatterning on DNA Origami nanoconstructs[J].J Ame Chem Soc, 2009, 131(19): 6660-6661.
[26]Kuzuya A, Kimura M, Numajiri K, et al. Precisely programmed and robust 2D streptavidin nanoarrays by using periodical nanometer-scale wells embedded in DNA origami assembly[J].Chembiochem, 2009, 10(11): 1811-1815.
[27]Rinker S, Ke Y, Liu Y, et al. Self-assembled DNA nanostructures for distance-dependent multivalent ligand “protein binding[J].Nature Nanotechnology, 2008, 3(7): 418-422.
[28] Yan H, Park SH, Finkelstein G, et al. DNA-Templated Self-Assembly of Protein Arrays and Highly Conductive Nanowires[J].Science, 2003, 301(5641): 1882.
[29]Rinker S, Ke Y, Liu Y, et al. Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding[J].Nat Nanotechnol, 2008, 3(7): 418-422.
[30] Selmi DN, Adamson RJ, Attrill H, et al. DNA-Templated Protein Arrays for Single-Molecule Imaging [J]. Nano Letters, 2011, 11(2): 657.
[31]Fu Y, Zeng D, Chao J, et al.Single-Step Rapid Assembly of DNA Origami Nanostructures for Addressable Nanoscale Bioreactors [J]. J Ame Chem Soc, 2013, 135 (2): 696.
[32]Derr ND, Goodman BS, Jungmann R, et al.Tug-of-war in motor protein ensembles revealed with a programmable DNA origami scaffold [J]. Science, 2012, 338(6107): 662.
[33]Yang Y, Wang J, Hideki S, et al. Self-assembly of size-controlled liposomes on DNA nanotemplates[J].Nat Chem, 2016, 8(5): 476.
[34]Suzuki Y, Endo M, Sugiyama H. Lipid-bilayer-assisted two-dimensional self-assembly of DNA origami nanostructures [J].Nature Communications, 2015, 6: 8052.
[35]Langecker M, Arnaut V, Martin TG, et al.Synthetic lipid membrane channels formed by designed DNA nanostructures[J]. Science, 2012, 338(6109): 932-936.
[36]Kerstin G, Li CY, Maria R, et al. Large-Conductance Transmembrane Porin Made from DNA Origami[J].Acs Nano, 2016, 10(9): 8207-8214.
[37]Hernándezainsa S, Keyser UF. DNA origami nanopores: an emerging tool in biomedicine[J]. Nanomedicine, 2016, 8(10): 1551-1554.
[38]Hernándezainsa S, Bell NA, Thacker VV, et al. DNA origami nanopores for controlling DNA translocation[J].Acs Nano, 2013, 7(7): 6024-6030.
[39]Bell NA, Engst CR, Ablay M, et al. DNA origami nanopores [J]. Nano Letters, 2013, 12(1): 512-517.
[40]Wei R, Martin TG, Rant U, et al. DNA origami gatekeepers for solid-state nanopores [J].Angew Chem Int Ed Engl, 2012, 51(20): 4864.
[41]Burns JR, Stulz E, Howorka S. Self-Assembled DNA Nanopores That Span Lipid Bilayers [J].Nano Letters, 2013, 13(6): 2351.
[42]Hernándezainsa S, Misiunas K, Thacker VV, et al. Voltage-dependent properties of DNA origami nanopores[J].Nano Letters, 2014, 14(3): 1270-1274.
[43]Hou X, Guo W, Jiang L. Biomimetic smart nanopores and nanochannels [J]. Chem Soc Rev, 2011, 40(5): 2385-2401.

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2018-05-20