|本期目录/Table of Contents|

[1]杨志坚,方泽鸿综述,王彦峰,等.组蛋白去乙酰化酶1/2在多器官缺血缺氧相关疾病中的研究进展[J].医学研究与战创伤救治(原医学研究生学报),2019,21(01):74-78.[doi:10.3969/j.issn.1672-271X.2019.01.017]
 YANG Zhi-jian,FANG Ze-hong reviewing,WANG Yan-feng,et al.Progress study of HDAC1/2 function in multiorgan under ischemia and anoxia diseases[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2019,21(01):74-78.[doi:10.3969/j.issn.1672-271X.2019.01.017]
点击复制

组蛋白去乙酰化酶1/2在多器官缺血缺氧相关疾病中的研究进展()

《医学研究与战创伤救治》(原医学研究生学报)[ISSN:1672-271X/CN:32-1713/R]

卷:
第21卷
期数:
2019年01期
页码:
74-78
栏目:
综述
出版日期:
2019-01-20

文章信息/Info

Title:
Progress study of HDAC1/2 function in multiorgan under ischemia and anoxia diseases
作者:
杨志坚方泽鸿综述王彦峰叶启发审校
作者单位:430071武汉,武汉大学中南医院肝胆疾病研究院(杨志坚、方泽鸿、王彦峰、叶启发)
Author(s):
YANG Zhi-jian FANG Ze-hong reviewing WANG Yan-feng YE Qi-fa checking
(Hepatobiliary Disease Institution, Zhongnan Hospital of Wuhan University,Wuhan 430071, Hubei,China)
关键词:
组蛋白去乙酰化酶1/2缺血缺氧
Keywords:
histone acetyltransferase 1/2ischemiaanoxia
分类号:
R34
DOI:
10.3969/j.issn.1672-271X.2019.01.017
文献标志码:
A
摘要:
表观遗传学机制如DNA甲基化、泛素化、组蛋白修饰等在多种生物学过程中扮演着重要的角色,其中组蛋白乙酰化在肿瘤细胞转移增殖、炎症的诱导、心脑血管疾病等方面发挥重要作用。组蛋白去乙酰化酶1/2(HDAC1/2)属于I类HDACs,在基因调控中发挥重要的表观遗传学修饰作用,近年来已成为研究癌症、心脑血管等疾病的热点。文章主要就HDAC1/2的蛋白质组学的作用机制及在心、脑、肝肾等组织缺血缺氧疾病中的研究进展进行综述。
Abstract:
Epigenetic mechanisms such as DNA methylation, ubiquitination and histone modification play an important role in a variety of biological processes, among which, histone acetylation plays an important role in tumor cell proliferation and proliferation, inflammation induction, cardiovascular and cerebrovascular diseases.HDAC1/2(histone acetyltransferase 1/2,HDAC1/2)belongs to class I HDACs and plays an important epigenetic modification role in gene regulation. Recently, it has become a hot spot for studying cancer cardiovascular and cerebrovascular diseases. We will summarize the research of HDAC1/2 in heart, brain, liver and kidney related hypoxic-ischemic diseases in this article.

参考文献/References:

[1]Lin YY, Kiihl S, Suhail Y, et al. Functional dissection of lysine deacetylases reveals that HDAC1 and p300 regulate AMPK[J]. Nature, 2012, 482(7384): 251-255.
[2]Durham BS, Grigg R, Wood IC. Inhibition of histone deacetylase 1 or 2 reduces induced cytokine expression in microglia through a protein synthesis independent mechanism[J]. J Neurochem, 2017, 143(2): 214-224.
[3]Zhang Q, Zhao K, Shen Q, et al. Tet2 is required to resolve inflammation by recruiting Hdac2 to specifically repress IL-6[J]. Nature, 2015, 525(7569): 389-393.
[4]Jeong Y, Du R, Zhu X, et al.Histone deacetylase isoforms regulate innate immune responses by deacetylating mitogen-activated protein kinase phosphatase-1[J]. J Leukoc Biol, 2014, 95(4):651-659.
[5]Tsai HD, Wu JS, Kao MH, et al. Clinacanthus nutans Protects Cortical Neurons Against Hypoxia-Induced Toxicity by Downregulating HDAC1/6[J]. Neuromolecular Med, 2016, 18(3): 274-282.
[6]Baltan S, Bachleda A, Morrison RS, et al. Expression of histone deacetylases in cellular compartments of the mouse brain and the effects of ischemia[J]. Transl Stroke Res, 2011, 2(3):411-423.
[7]Tang Y, Lin YH, Ni HY, et al. Inhibiting Histone Deacetylase 2 (HDAC2) Promotes Functional Recovery From Stroke [J]. J Am Heart Assoc, 2017, 6(10):e007236.
[8]Han Z, Zhao H, Tao Z, et al. TOPK Promotes Microglia/Macrophage Polarization towards M2 Phenotype via Inhibition of HDAC1 and HDAC2 Activity after Transient Cerebral Ischemia[J]. Aging Dis, 2018, 9(2): 235-248.
[9]Wang J, Zhao H, Fan Z, et al.Long Noncoding RNA H19 Promotes Neuroinflammation In Ischemic Stroke by Driving Histone Deacetylase 1-Dependent M1 Microglial Polarization [J]. Stroke, 2017, 48(8):2211-2221.[1]0]Lin YH, Dong J, Tang Y, et al. Opening a new time window for treatment of stroke by targeting HDAC2 [J]. J Neurosci, 2017, 37(28):6712-6728.[1]1]Formisano L, Guida N, Valsecchi V, et al. Sp3/REST/HDAC1/HDAC2 Complex Represses and Sp1/HIF-1/p300 Complex Activates ncx1 Gene Transcription, in Brain Ischemia and in Ischemic Brain Preconditioning by Epigenetic Mechanism[J]. J Neurosci, 2015, 35(19):7332-7348.[1]2]Luo CX, Lin YH, Qian XD, et al. Interaction of nNOS with PSD-95 negatively controls regenerative repair after stroke [J]. J Neurosci, 2014, 34(40):13535-13548.[1]3]Kassis H, Chopp M, Liu XS, et al. Histone deacetylase expression in white matter oligodendrocytes after stroke[J]. Neurochem Int, 2014, 77:17-23.[1]4]Zhang J, Wang S, Yuan L, et al. Neuron-restrictive silencer factor (NRSF) represses cocaine- and amphetamine-regulated transcript (CART) transcription and antagonizes cAMP-response element-binding protein signaling through a dual NRSE mechanism [J]. J Biol Chem, 2012, 287(51):42574-42587.[1]5]Wan Q, Ma X, Zhang ZJ, et al. Ginsenoside Reduces Cognitive Impairment During Chronic Cerebral Hypoperfusion Through Brain-Derived Neurotrophic Factor Regulated by Epigenetic Modulation[J].Mol Neurobiol, 2017, 54(4):2889-2900.[1]6]林佳美,罗佛全.孕早期母体丙泊酚暴露对子代学习记忆和组蛋白去乙酰化酶的影响[J].医学研究生学报,2017,30(8):804-807.[1]7]Grff J, Rei D, Guan JS, et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain[J]. Nature,2012,483(7388): 222-226.[1]8]Singh P, Thakur MK. Reduced recognition memory is correlated with decrease in DNA methyltransferase1 and increase in histone deacetylase2 protein expression in old male mice[J]. Biogerontology, 2014, 15(4):339-346.[1]9]Gomez-Smith M, Qin Z, Zhou X, et al. LIM domain only 4 protein promotes granulocyte colony-stimulating factor-induced signaling in neurons[J]. Cell Mol Life Sci, 2010, 67(6):949-957.
[2]0]Li Y, Zhang Z, Zhou X, et al. Histone Deacetylase 1 Inhibition Protects Against Hypoxia-Induced Swelling in H9c2 Cardiomyocytes Through Regulating Cell Stiffness[J]. Circ J, 2017, 82(1): 192-202.
[2]1]Herr DJ, Baarine M, Aune SE, et al. HDAC1 localizes to the mitochondria of cardiac myocytes and contributes to early cardiac reperfusion injury[J]. J Mol Cell Cardiol, 2018, 114:309-319.
[2]2]Dingar D, Konecny F, Zou J, et al. Anti-apoptotic function of the E2F transcription factor 4 (E2F4)/p130, a member of retinoblastoma gene family in cardiac myocytes[J]. J Mol Cell Cardiol, 2012, 53(6):820-828.
[2]3]Gang H, Dhingra R, Wang Y, et al. Epigenetic regulation of E2F-1-dependent Bnip3 transcription and cell death by nuclear factor-κB and histone deacetylase-1[J]. Pediatr Cardiol, 2011, 32(3):263-266.
[2]4]Li HF, Cheng CF, Liao WJ, et al. ATF3-mediated epigenetic regulation protects against acute kidney injury[J]. J Am Soc Nephrol, 2010, 21(6):1003-1013.
[2]5]Ma T, Huang C, Xu Q, et al. Suppression of BMP-7 by histone deacetylase 2 promoted apoptosis of renal tubular epithelial cells in acute kidney injury[J]. Cell Death Dis, 2017, 8(10):e3139.
[2]6]Hsing CH, Lin CF, So E, et al. α2-Adrenoceptor agonist dexmedetomidine protects septic acute kidney injury through increasing BMP-7 and inhibiting HDAC2 and HDAC5[J]. Am J Physiol Renal Physiol, 2012, 303(10):1443-1453.
[2]7]Choi SY, Kee HJ, Kurz T, et al. Class I HDACs specifically regulate E-cadherin expression in human renal epithelial cells[J]. J Cell Mol Med, 2016, 20(12):2289-2298.
[2]8]Tang J, Yan Y, Zhao TC, et al. Class I histone deacetylase activity is required for proliferation of renal epithelial cells[J]. Am J Physiol Renal Physiol, 2013, 305(3):244-254.
[2]9]Huang J, Barr E, Rudnick DA. Characterization of the regulation and function of zinc-dependent histone deacetylases during rodent liver regeneration[J]. Hepatology, 2013, 57(5): 1742-1751.
[3]0]Ke Q, Yang RN, Ye F, et al.Impairment of liver regeneration by the histone deacetylase inhibitor valproic acid in mice[J]. J Zhejing Univ Sci B, 2012, 13(9): 695-706.
[3]1]Evankovich J, Cho SW, Zhang R, et al. High mobility groupbox 1 release from hepatocytes during ischemia and reperfusion injury is mediated by decreased histone deacetylase activity[J]. J Biol Chem, 2010, 285(51):39888-39897.
[3]2]Fan J, Alsarraf O, Chou CJ, et al. Ischemic preconditioning, retinal neuroprotection and histone deacetylase activities[J]. Exp Eye Res, 2016, 146:269-275.
[3]3]Fan J, Alsarraf O, Dahrouj M, et al. Inhibition of HDAC2 protects the retina from ischemic injury[J]. Invest Ophthalmol Vis Sci, 2013, 54(6):4072-4080.
[3]4]Michels AJ, Hagen TM, Frei B. Human genetic variation influences vitamin C homeostasis by altering vitamin C transport and antioxidant enzyme function[J]. Annu Rev Nutr, 2013, 33:45-70.
[3]5]Koriyama Y, Takagi Y, Chiba K, et al.Requirement of retinoic acid receptor β for genipin derivative-induced optic nerve regeneration in adult rat retina[J]. PLoS One, 2013, 8(8):e71252.
[3]6]Tiana M, Acosta IB, Puente SL, et al. The SIN3A histone deacetylase complex is required for a complete transcriptional response to hypoxia[J]. Nucleic Acids Res, 2018, 46(1):120-133.
[3]7]Lee J, Byeon JS, Lee KS, et al. Chondrogenic potential and anti-senescence effect of hypoxia on canine adipose mesenchymal stem cells[J]. Vet Res Commun, 2016, 40(1):1-10.
[3]8]Xu H, Dai Y, Xia M, et al. Effects of smoking on expressions of HIF-1α and HDAC2 in asthmatic mice[J]. Zhonghua Yi Xue Za Zhi, 2014, 94(34):2699-2703.
[3]9]Yang D, Xie P, Liu ZH. Ischemia/Reperfusion-Induced MKP-3 Impairs Endothelial NO Formation via Inactivation of ERK1/2 Pathway[J]. PLoS One, 2012, 7(7):e42076.
[4]0]Hou W, Dong Y, Zhang J, et al. Hypoxia-induced deacetylation is required for tetraploid differentiation in response to testicular ischemia-reperfusion (IR) injury[J]. J Androl, 2012, 33(6):1379-1386.
[4]1]Park YK, Park H. Differentiated embryo chondrocyte 1 (DEC1) represses PPARγ2 gene through interacting with CCAAT/enhancer binding protein β (C/EBPβ)[J]. Mol Cells, 2012, 33(6):575-581.

相似文献/References:

备注/Memo

备注/Memo:
基金项目:武汉大学中南医院科技创新培育基金(cxpy20160032)
更新日期/Last Update: 2019-01-20