|本期目录/Table of Contents|

[1]李瑾综述,刘炯审校.活性氧与肿瘤关系的研究进展[J].医学研究与战创伤救治(原医学研究生学报),2019,21(3):297-301.[doi:10.3969/j.issn.1672-271X.2019.03.016]
 LI Jin reviewing,LIU Jiong checking.Progress study of reactive oxygen species and tumor[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2019,21(3):297-301.[doi:10.3969/j.issn.1672-271X.2019.03.016]
点击复制

活性氧与肿瘤关系的研究进展()

《医学研究与战创伤救治》(原医学研究生学报)[ISSN:1672-271X/CN:32-1713/R]

卷:
第21卷
期数:
2019年3期
页码:
297-301
栏目:
综述
出版日期:
2019-05-10

文章信息/Info

Title:
Progress study of reactive oxygen species and tumor
文章编号:
1672-271X(2019)03-0297-05
作者:
李瑾综述 刘炯审校
作者单位:233033 蚌埠,蚌埠医学院(李 瑾); 210002 南京,东部战区总医院(原南京军区南京总医院)消化内科(刘 炯)
Author(s):
LI Jin1 reviewing LIU Jiong2 checking
(1.Bengbu Medical College,Bengbu 233003,Anhui,China; 2.Department of Gastroenterology,General Hospital of Eastern Theater Command,PLA, Nanjing 210002,Jiangsu,China)
关键词:
活性氧 肿瘤 凋亡
Keywords:
reactive oxygen species tumor apoptosis
分类号:
R73
DOI:
10.3969/j.issn.1672-271X.2019.03.016
文献标志码:
A
摘要:
活性氧(ROS)主要是细胞线粒体电子传递链产生的一些性质活泼的含氧物质。肿瘤相关基因可能会诱导活性氧的产生,继而激活与肿瘤发生发展相关的信号通路。ROS因为浓度的不同,对细胞也具有不同的作用。肿瘤细胞出现原因是细胞在分裂、增殖的过程中基因发生突变,ROS则会促进这一过程。而细胞死亡的原因是ROS导致细胞DNA、蛋白质、脂质的损伤。文章主要从ROS的生成与清除、ROS的致癌作用、ROS的抑癌作用等方面进行综述。
Abstract:
Reactive oxygen species (ROS) is the general name for the active oxygen metabolites that the mainly production from electron transport chain. Tumor-associated genes may induce the production of ROS, which in turn activate the signal pathways involved in tumor development. ROS promotes cell mitosis and proliferation, increases genomic instability and induces tumorigenesis and development. However,the high concentration of ROS causes the damage of DNA, protein and lipid, eventually leading to cell death. This article reviews the generation and clearance, the carcinogenic effect, and the anti-cancer effect of ROS.

参考文献/References:

1 LauAT, WangY, ChiuJF. Reactive oxygen species: current knowledge and applications in cancer research and therapeutic[J]. J Cell Biochem, 2008, 104(2): 657-667.
2 CoutoN, WoodJ, BarberJ. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network[J]. Free Radic Biol Med, 2016, 95: 27-42.
3 WooHA, YimSH, ShinDH, et al. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling[J]. Cell, 2010, 140(4): 517-528.
4 SzatrowskiTP, NathanCF. Production of large amounts of hydrogen peroxide by human tumor cells[J]. Cancer Res, 1991, 51(3): 794-798.
5 常东, 赵亚双, 潘洪志. 结直肠癌患者体内氧化应激状态的评价及产物的分析[J]. 医学研究生学报, 2009, 22(10): 1039-1041.
6 W?rmannSM, SongL, AiJ, et al. Loss of P53 Function Activates JAK2-STAT3 Signaling to Promote Pancreatic Tumor Growth, Stroma Modification, and Gemcitabine Resistance in Mice and Is Associated With Patient Survival[J]. Gastroenterology, 2016, 151(1): 180-193.
7 KruiswijkF, LabuschagneCF, VousdenKH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill[J]. Nat Rev Mol Cell Biol, 2015, 16(7): 393-405.
8 BanerjeeA, ThyagarajanK, ChatterjeeS, et al. Lack of p53 augments antitumor functions in cytolytic T Cells[J]. Cancer Res, 2016, 76(18): 5229-5240.
9 BudanovAV, KarinM. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling[J]. Cell, 2008, 134(3): 451-460.
10 ParkMT, KimMJ, SuhY, et al. Novel signaling axis for ROS generation during K-Ras-induced cellular transformation[J]. Cell Death Differ, 2014, 21(8): 1185-1197.
11 WangP, SunYC, LuWH, et al. Selective killing of K-ras-transformed pancreatic cancer cells by targeting NAD(P)H oxidase[J]. Chin J Cancer, 2015, 34(4): 166-176.
12 WangP, ZhuC, MaM, et al. Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer[J]. Oncotarget, 2015, 6(25): 21148-21158.
13 CeramiE, GaoJ, DogrusozU, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data[J]. Cancer Discov, 2012, 2(5): 401-404.
14 GaoJ, Aksoy BA, DogrusozU, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal[J]. Sci Signal, 2013, 6(269): pl1.
15 YuW, DenuRA, KrautkramerKA, et al. Loss of SIRT3 provides growth advantage for B cell malignancies[J]. J Biol Chem, 2016, 291(7): 3268-3279.
16 LiM, ChenQ, YuX. Chemopreventive effects of ROS targeting in a murine model of BRCA1-deficient breast cancer[J]. Cancer Res, 2017, 77(2): 448-458.
17 CapalaME, PruisM, VellengaE, et al. Depletion of SAM50 Specifically Targets BCR-ABL-Expressing Leukemic Stem and Progenitor Cells by Interfering with Mitochondrial Functions[J]. Stem Cells Dev, 2016, 25(5): 427-437.
18 NakanishiA, WadaY, KitagishiY, et al. Link between PI3K/AKT/PTEN pathway and NOX proteinin diseases[J]. Aging Dis, 2014, 5(3): 203-211.
19 YousefiB, SamadiN, AhmadiY. Akt and p53R2, partners that dictate the progression and invasiveness of cancer[J]. DNA Repair (Amst), 2014, 22: 24-29.
20 KoundourosN, PoulogiannisG. Phosphoinositide 3-Kinase/Akt Signaling and Redox Metabolism in Cancer[J]. Front Oncol, 2018, 8: 160.
21 GorriniC, GangBP, BassiC, et al. Estrogen controls the survival of BRCA1-deficient cells via a PI3K-NRF2-regulated pathway[J]. Proc Natl Acad Sci USA, 2014, 111(12): 4472-4477.
22 YuanK, LeiY, ChenHN, et al. HBV-induced ROS accumulation promotes hepatocarcinogenesis through Snail-mediated epigenetic silencing of SOCS3[J]. Cell Death Differ, 2016, 23(4): 616-627.
23 LiJ, LanT, ZhangC, et al. Reciprocal activation between IL-6/STAT3 and NOX4/Akt signalings promotes proliferation and survival of non-small cell lung cancer cells[J]. Oncotarget, 2015, 6(2): 1031-1048.
24 ChoKH, ChoiMJ, JeongKJ, et al. A ROS/STAT3/HIF‐1α signaling cascade mediates EGF‐induced TWIST1 expression and prostate cancer cell invasion[J]. The Prostate, 2014, 74(5): 528-536.
25 SinnbergT, NoorS, VenturelliS, et al. The ROS‐induced cytotoxicity of ascorbate is attenuated by hypoxia and HIF‐1alpha in the NCI60 cancer cell lines[J]. J Cell Mol Med, 2014, 18(3): 530-541.
26 SayinVI, IbrahimMX, LarssonE, et al. Antioxidants accelerate lung cancer progression in mice[J]. Sci Transl Med, 2014, 6(221): 221ra15.
27 Torrens-MasM, PonsDG, Sastre-SerraJ, et al. SIRT3 silencing sensitizes breast cancer cells to cytotoxic treatments through an increment in ROS production[J]. J Cell Biochem, 2017, 118(2): 397-406.
28 RangarajanP, KarthikeyanA, LuJ, et al. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia[J]. Neuroscience, 2015, 311: 398-414.
29 JiangL, KonN, LiT, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62.
30 HarrisIS, TreloarAE, InoueS, et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression[J]. Cancer Cell, 2015, 27(2): 211-222.
31 WankaC, SteinbachJP, RiegerJ. Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis[J]. J Biol Chem, 2012, 287(40): 33436-33446.
32 IshimotoT, NaganoO, YaeT, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc? and thereby promotes tumor growth[J]. Cancer cell, 2011, 19(3): 387-400.
33 IsraelsenWJ, DaytonTL, DavidsonSM, et al. PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells[J]. Cell, 2013, 155(2): 397-409.
34 TamadaM, NaganoO, TateyamaS,et al. Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells[J]. Cancer Res, 2012, 72: 1438-1448.
35 HerraizC, CalvoF, PandyaP, et al. Reactivation of p53 by a Cytoskeletal Sensor to Control the Balance Between DNA Damage and Tumor Dissemination[J]. J Natl Cancer Inst, 2016, 108(1):djv289.
36 LiouGY, StorzP. Reactive oxygen species in cancer[J]. Free Radic Res, 2010, 44(5): 479-496.
37 SatoA, OkadaM, ShibuyaK, et al. Pivotal role for ROS activation of p38 MAPK in the control of differentiation and tumor-initiating capacity of glioma-initiating cells[J]. Stem Cell Res, 2014, 12(1): 119-131.
38 BigarellaCL, LiangR, GhaffariS. Stem cells and the impact of ROS signaling[J]. Development, 2014, 141(22): 4206-4218.
39 NishidaT, HattoriK, WatanabeK. The regulatory and signaling mechanisms of the ASK family[J]. Adv Biol Regul, 2017, 66: 2-22.
40 FuruhataM, TakadaE, NoguchiT, et al. Apoptosis signal-regulating kinase (ASK)-1 mediates apoptosis through activation of JNK1 following engagement of membrane immunoglobulin[J]. Exp Cell Res, 2009, 315(20): 3467-3476.
41 谢娟, 黄新艳, 许银燕, 等. 黄连素诱导人乳腺癌MCF-7细胞凋亡及其相关的氧化应激机制[J]. 医学研究生学报, 2012, 25(2): 135-139.
42 DonadelliM, DandoI, ZaniboniT, et al. Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism[J]. Cell Death Dis, 2011, 2(4): e152.
43 ZhangQ, MaY, ChengYF, et al. Involvement of reactive oxygen species in 2-methoxyestradiol-induced apoptosis in human neuroblastoma cells[J]. Cancer Lett, 2011, 313(2): 201-210.
44 CerioniL, FioraniM, AzzoliniC, et al. A moderate decline in U937 cell GSH levels triggers PI3 kinase/Akt-dependent Bad phosphorylation, thereby preventing an otherwise prompt apoptotic response[J]. Pharmacol Res, 2012, 65(3): 379-386.
45 赵一兵, 杨宏宇, 陈国玉. 胃癌细胞中活性氧的变化及意义[J]. 东南大学学报(医学版), 2007, 26(1): 70-71.
46 李红艳, 黄健, 梁斌, 等. 不同剂量柚皮素介导的促氧化作用及其对 CNE2细胞生长的调控[J]. 医学研究生学报, 2014, 27(4): 361-367.

相似文献/References:

[1]张亮,王斌综述,陈东风审校.线性泛素化修饰在肿瘤发生发展中的研究进展[J].医学研究与战创伤救治(原医学研究生学报),2019,21(4):382.[doi:10.3969/j.issn.1672-271X.2019.04.011]
 ZHANG Liang,WANG Bin reviewing,CHEN Dong-feng checking.Research progress of linear ubiquitination in cancer[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2019,21(3):382.[doi:10.3969/j.issn.1672-271X.2019.04.011]
[2]朱皓皞综述,梅金红审校.外泌体液体活检及其在肿瘤诊断治疗中的研究进展[J].医学研究与战创伤救治(原医学研究生学报),2019,21(5):512.[doi:10.3969/j.issn.1672-271X.2019.05.014]
 ZHU Hao-hao,MEI Jin-hong.Advances in liquid biopsy of exosomes and its application in diagnosis and treatment of tumors[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2019,21(3):512.[doi:10.3969/j.issn.1672-271X.2019.05.014]

备注/Memo

备注/Memo:
收稿日期:2018-10-19
更新日期/Last Update: 2019-05-10