1 LauAT, WangY, ChiuJF. Reactive oxygen species: current knowledge and applications in cancer research and therapeutic[J]. J Cell Biochem, 2008, 104(2): 657-667.
2 CoutoN, WoodJ, BarberJ. The role of glutathione reductase and related enzymes on cellular redox homoeostasis network[J]. Free Radic Biol Med, 2016, 95: 27-42.
3 WooHA, YimSH, ShinDH, et al. Inactivation of peroxiredoxin I by phosphorylation allows localized H2O2 accumulation for cell signaling[J]. Cell, 2010, 140(4): 517-528.
4 SzatrowskiTP, NathanCF. Production of large amounts of hydrogen peroxide by human tumor cells[J]. Cancer Res, 1991, 51(3): 794-798.
5 常东, 赵亚双, 潘洪志. 结直肠癌患者体内氧化应激状态的评价及产物的分析[J]. 医学研究生学报, 2009, 22(10): 1039-1041.
6 W?rmannSM, SongL, AiJ, et al. Loss of P53 Function Activates JAK2-STAT3 Signaling to Promote Pancreatic Tumor Growth, Stroma Modification, and Gemcitabine Resistance in Mice and Is Associated With Patient Survival[J]. Gastroenterology, 2016, 151(1): 180-193.
7 KruiswijkF, LabuschagneCF, VousdenKH. p53 in survival, death and metabolic health: a lifeguard with a licence to kill[J]. Nat Rev Mol Cell Biol, 2015, 16(7): 393-405.
8 BanerjeeA, ThyagarajanK, ChatterjeeS, et al. Lack of p53 augments antitumor functions in cytolytic T Cells[J]. Cancer Res, 2016, 76(18): 5229-5240.
9 BudanovAV, KarinM. p53 target genes sestrin1 and sestrin2 connect genotoxic stress and mTOR signaling[J]. Cell, 2008, 134(3): 451-460.
10 ParkMT, KimMJ, SuhY, et al. Novel signaling axis for ROS generation during K-Ras-induced cellular transformation[J]. Cell Death Differ, 2014, 21(8): 1185-1197.
11 WangP, SunYC, LuWH, et al. Selective killing of K-ras-transformed pancreatic cancer cells by targeting NAD(P)H oxidase[J]. Chin J Cancer, 2015, 34(4): 166-176.
12 WangP, ZhuC, MaM, et al. Micro-RNA-155 is induced by K-Ras oncogenic signal and promotes ROS stress in pancreatic cancer[J]. Oncotarget, 2015, 6(25): 21148-21158.
13 CeramiE, GaoJ, DogrusozU, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data[J]. Cancer Discov, 2012, 2(5): 401-404.
14 GaoJ, Aksoy BA, DogrusozU, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal[J]. Sci Signal, 2013, 6(269): pl1.
15 YuW, DenuRA, KrautkramerKA, et al. Loss of SIRT3 provides growth advantage for B cell malignancies[J]. J Biol Chem, 2016, 291(7): 3268-3279.
16 LiM, ChenQ, YuX. Chemopreventive effects of ROS targeting in a murine model of BRCA1-deficient breast cancer[J]. Cancer Res, 2017, 77(2): 448-458.
17 CapalaME, PruisM, VellengaE, et al. Depletion of SAM50 Specifically Targets BCR-ABL-Expressing Leukemic Stem and Progenitor Cells by Interfering with Mitochondrial Functions[J]. Stem Cells Dev, 2016, 25(5): 427-437.
18 NakanishiA, WadaY, KitagishiY, et al. Link between PI3K/AKT/PTEN pathway and NOX proteinin diseases[J]. Aging Dis, 2014, 5(3): 203-211.
19 YousefiB, SamadiN, AhmadiY. Akt and p53R2, partners that dictate the progression and invasiveness of cancer[J]. DNA Repair (Amst), 2014, 22: 24-29.
20 KoundourosN, PoulogiannisG. Phosphoinositide 3-Kinase/Akt Signaling and Redox Metabolism in Cancer[J]. Front Oncol, 2018, 8: 160.
21 GorriniC, GangBP, BassiC, et al. Estrogen controls the survival of BRCA1-deficient cells via a PI3K-NRF2-regulated pathway[J]. Proc Natl Acad Sci USA, 2014, 111(12): 4472-4477.
22 YuanK, LeiY, ChenHN, et al. HBV-induced ROS accumulation promotes hepatocarcinogenesis through Snail-mediated epigenetic silencing of SOCS3[J]. Cell Death Differ, 2016, 23(4): 616-627.
23 LiJ, LanT, ZhangC, et al. Reciprocal activation between IL-6/STAT3 and NOX4/Akt signalings promotes proliferation and survival of non-small cell lung cancer cells[J]. Oncotarget, 2015, 6(2): 1031-1048.
24 ChoKH, ChoiMJ, JeongKJ, et al. A ROS/STAT3/HIF‐1α signaling cascade mediates EGF‐induced TWIST1 expression and prostate cancer cell invasion[J]. The Prostate, 2014, 74(5): 528-536.
25 SinnbergT, NoorS, VenturelliS, et al. The ROS‐induced cytotoxicity of ascorbate is attenuated by hypoxia and HIF‐1alpha in the NCI60 cancer cell lines[J]. J Cell Mol Med, 2014, 18(3): 530-541.
26 SayinVI, IbrahimMX, LarssonE, et al. Antioxidants accelerate lung cancer progression in mice[J]. Sci Transl Med, 2014, 6(221): 221ra15.
27 Torrens-MasM, PonsDG, Sastre-SerraJ, et al. SIRT3 silencing sensitizes breast cancer cells to cytotoxic treatments through an increment in ROS production[J]. J Cell Biochem, 2017, 118(2): 397-406.
28 RangarajanP, KarthikeyanA, LuJ, et al. Sirtuin 3 regulates Foxo3a-mediated antioxidant pathway in microglia[J]. Neuroscience, 2015, 311: 398-414.
29 JiangL, KonN, LiT, et al. Ferroptosis as a p53-mediated activity during tumour suppression[J]. Nature, 2015, 520(7545): 57-62.
30 HarrisIS, TreloarAE, InoueS, et al. Glutathione and thioredoxin antioxidant pathways synergize to drive cancer initiation and progression[J]. Cancer Cell, 2015, 27(2): 211-222.
31 WankaC, SteinbachJP, RiegerJ. Tp53-induced glycolysis and apoptosis regulator (TIGAR) protects glioma cells from starvation-induced cell death by up-regulating respiration and improving cellular redox homeostasis[J]. J Biol Chem, 2012, 287(40): 33436-33446.
32 IshimotoT, NaganoO, YaeT, et al. CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc? and thereby promotes tumor growth[J]. Cancer cell, 2011, 19(3): 387-400.
33 IsraelsenWJ, DaytonTL, DavidsonSM, et al. PKM2 isoform-specific deletion reveals a differential requirement for pyruvate kinase in tumor cells[J]. Cell, 2013, 155(2): 397-409.
34 TamadaM, NaganoO, TateyamaS,et al. Modulation of glucose metabolism by CD44 contributes to antioxidant status and drug resistance in cancer cells[J]. Cancer Res, 2012, 72: 1438-1448.
35 HerraizC, CalvoF, PandyaP, et al. Reactivation of p53 by a Cytoskeletal Sensor to Control the Balance Between DNA Damage and Tumor Dissemination[J]. J Natl Cancer Inst, 2016, 108(1):djv289.
36 LiouGY, StorzP. Reactive oxygen species in cancer[J]. Free Radic Res, 2010, 44(5): 479-496.
37 SatoA, OkadaM, ShibuyaK, et al. Pivotal role for ROS activation of p38 MAPK in the control of differentiation and tumor-initiating capacity of glioma-initiating cells[J]. Stem Cell Res, 2014, 12(1): 119-131.
38 BigarellaCL, LiangR, GhaffariS. Stem cells and the impact of ROS signaling[J]. Development, 2014, 141(22): 4206-4218.
39 NishidaT, HattoriK, WatanabeK. The regulatory and signaling mechanisms of the ASK family[J]. Adv Biol Regul, 2017, 66: 2-22.
40 FuruhataM, TakadaE, NoguchiT, et al. Apoptosis signal-regulating kinase (ASK)-1 mediates apoptosis through activation of JNK1 following engagement of membrane immunoglobulin[J]. Exp Cell Res, 2009, 315(20): 3467-3476.
41 谢娟, 黄新艳, 许银燕, 等. 黄连素诱导人乳腺癌MCF-7细胞凋亡及其相关的氧化应激机制[J]. 医学研究生学报, 2012, 25(2): 135-139.
42 DonadelliM, DandoI, ZaniboniT, et al. Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism[J]. Cell Death Dis, 2011, 2(4): e152.
43 ZhangQ, MaY, ChengYF, et al. Involvement of reactive oxygen species in 2-methoxyestradiol-induced apoptosis in human neuroblastoma cells[J]. Cancer Lett, 2011, 313(2): 201-210.
44 CerioniL, FioraniM, AzzoliniC, et al. A moderate decline in U937 cell GSH levels triggers PI3 kinase/Akt-dependent Bad phosphorylation, thereby preventing an otherwise prompt apoptotic response[J]. Pharmacol Res, 2012, 65(3): 379-386.
45 赵一兵, 杨宏宇, 陈国玉. 胃癌细胞中活性氧的变化及意义[J]. 东南大学学报(医学版), 2007, 26(1): 70-71.
46 李红艳, 黄健, 梁斌, 等. 不同剂量柚皮素介导的促氧化作用及其对 CNE2细胞生长的调控[J]. 医学研究生学报, 2014, 27(4): 361-367.
[1]张亮,王斌综述,陈东风审校.线性泛素化修饰在肿瘤发生发展中的研究进展[J].医学研究与战创伤救治(原医学研究生学报),2019,21(4):382.[doi:10.3969/j.issn.1672-271X.2019.04.011]
ZHANG Liang,WANG Bin reviewing,CHEN Dong-feng checking.Research progress of linear ubiquitination in cancer[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2019,21(3):382.[doi:10.3969/j.issn.1672-271X.2019.04.011]
[2]朱皓皞综述,梅金红审校.外泌体液体活检及其在肿瘤诊断治疗中的研究进展[J].医学研究与战创伤救治(原医学研究生学报),2019,21(5):512.[doi:10.3969/j.issn.1672-271X.2019.05.014]
ZHU Hao-hao,MEI Jin-hong.Advances in liquid biopsy of exosomes and its application in diagnosis and treatment of tumors[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2019,21(3):512.[doi:10.3969/j.issn.1672-271X.2019.05.014]