|本期目录/Table of Contents|

[1]地里呼玛尔·吐鲁洪,曾慧娟综述,王少华审校.m6A甲基化在肿瘤中的作用研究进展[J].医学研究与战创伤救治(原医学研究生学报),2019,21(4):402-407.[doi:10.3969/j.issn.1672-271X.2019.04.015]
 Dilihumaer Tuluhong,ZENG Hui-juan reviewing,WANG Shao-hua checking.The role and mechanism of N6-methyladenosine (m6A) modification in cancer progression[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2019,21(4):402-407.[doi:10.3969/j.issn.1672-271X.2019.04.015]
点击复制

m6A甲基化在肿瘤中的作用研究进展()

《医学研究与战创伤救治》(原医学研究生学报)[ISSN:1672-271X/CN:32-1713/R]

卷:
第21卷
期数:
2019年4期
页码:
402-407
栏目:
综述
出版日期:
2019-07-20

文章信息/Info

Title:
The role and mechanism of N6-methyladenosine (m6A) modification in cancer progression
文章编号:
1672-271X(2019)04-0402-06
作者:
地里呼玛尔·吐鲁洪 曾慧娟综述 王少华审校
作者单位:210002 南京,南京大学医学院附属金陵医院(东部战区总医院)全军普通外科研究所(地里呼玛尔·吐鲁洪、曾慧娟、王少华)
Author(s):
Dilihumaer TuluhongZENG Hui-juan reviewing WANG Shao-hua checking
(Research Institute of General Surgery, Jingling Hospital, Nanjing University School of Medicine/General Hospital of Eastern Theater Command,PLA,Nanjing 210002,Jiangsu,China)
关键词:
m6A修饰 RNA甲基化 癌症 表观遗传修饰
Keywords:
N6-methyladenosinem RNA methylation cancer progression epigenetic
分类号:
R73
DOI:
10.3969/j.issn.1672-271X.2019.04.015
文献标志码:
A
摘要:
N6-甲基腺苷甲基化(m6A)是mRNA中最常见的修饰形式,m6A在不改变碱基序列的条件下调控基因的转录后水平,因此认为m6A与RNA的代谢过程密切相关。m6A修饰主要与三种类型的蛋白酶相关,编码基因分别为“写入基因”、“擦出基因”和“读取基因”。目前研究表明,m6A与癌症的发生发展密切相关。文章主要就国内外研究进展对m6A修饰的概念,特别是与癌症发生之间的作用进行综述。
Abstract:
Given that N6-methyladenosinem (m6A) is the most abundant mRNA modification and the regulation of m6A is a reversible and dynamic process. m6A controlling gene expression at the post-transcriptional level. m6A level is influenced by three groups of regulatory factors namely “writers”, “erasers” and “readers”. Recent studies found that RNA m6A modification is associated with many biological processed. Here we reviewed the regulation of m6A and tried to summarize the role and mechanism of m6A associated molecules in cancer progression.

参考文献/References:

1 SiegelRL, MillerKD, JemalA. Cancer statistics, 2019[J]. CA Cancer J Clin, 2019, 69(1): 7-34.
2 WeiCM, GershowitzA, MossB. Methylated nucleotides block 5' terminus of HeLa cell messenger RNA[J]. Cell, 1975,4(4):379-386.
3 DominissiniD, Moshitch-MoshkovitzS, SchwartzS, et al. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq[J]. Nature, 2012,485(7397):201-206.
4 LiuZX, LiLM, SunHL, et al. Link Between m6A Modification and Cancers[J]. Front Bioeng Biotechnol, 2018,6:89.
5 MeyerKD, SaletoreY, ZumboP, et al. Comprehensive analysis of mRNA methylation reveals enrichment in 3' UTRs and near stop codons[J]. Cell, 2012,149(7):1635-1646.
6 王天工,叶孟.m~6A甲基化与肿瘤研究进展[J].遗传,2018,40(12):1055-1065.
7 FuY, DominissiniD, RechaviG, et al. Gene expression regulation mediated through reversible m(6)A RNA methylation[J]. Nat Rev Genet, 2014,15(5):293-306.
8 CuiQ, ShiH, YeP, et al. m(6)A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells[J]. Cell Rep, 2017,18(11):2622-2634.
9 HuangY, YanJ, LiQ, et al. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5[J]. Nucleic Acids Res, 2015,43(1):373-384.
10 MeyerKD, JaffreySR. Rethinking m(6)A Readers, Writers, and Erasers[J]. Annu Rev Cell Dev Biol, 2017,33:319-342.
11 BujnickiJM, FederM, RadlinskaM, et al. Structure prediction and phylogenetic analysis of a functionally diverse family of proteins homologous to the MT-A70 subunit of the human mRNA:m(6)A methyltransferase[J]. J Mol Evol, 2002,55(4):431-444.
12 BarbieriI, TzelepisK, PandolfiniL, et al. Promoter-bound METTL3 maintains myeloid leukaemia by m(6)A-dependent translation control[J]. Nature, 2017,552(7683):126-131.
13 VuLP, PickeringBF, ChengY, et al. The N(6)-methyladenosine (m(6)A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells[J]. Nat Med, 2017,23(11):1369-1376.
14 ZhangC, ZhiWI, LuH, et al. Hypoxia-inducible factors regulate pluripotency factor expression by ZNF217- and ALKBH5-mediated modulation of RNA methylation in breast cancer cells[J]. Oncotarget,2016,7(40):64527-64542.
15 CaiX, WangX, CaoC, et al. HBXIP-elevated methyltransferase METTL3 promotes the progression of breast cancer via inhibiting tumor suppressor let-7g[J]. Cancer Lett, 2018,415:11-19.
16 ChenM, WeiL, LawCT, et al. RNA N6-methyladenosine methyltransferase-like 3 promotes liver cancer progression through YTHDF2-dependent posttranscriptional silencing of SOCS2[J]. Hepatology, 2018,67(6):2254-2270.
17 TaketoK, KonnoM, AsaiA, et al. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells[J]. Int J Oncol, 2018,52(2):621-629.
18 LiX, TangJ, HuangW, et al. The M6A methyltransferase METTL3: acting as a tumor suppressor in renal cell carcinoma[J]. Oncotarget, 2017,8(56):96103-96116.
19 LiuJ, YueY, HanD, et al. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation[J]. Nat Chem Biol, 2014,10(2):93-95.
20 WangX, HuangJ, ZouT, et al. Human m(6)A writers: Two subunits, 2 roles[J]. RNA Biol, 2017,14(3):300-304.
21 WengH, HuangH, WuH, et al. METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m(6)A Modification[J]. Cell Stem Cell, 2018,22(2):191-205.
22 MaJZ, YangF, ZhouCC, et al. METTL14 suppresses the metastatic potential of hepatocellular carcinoma by modulating N(6) -methyladenosine-dependent primary MicroRNA processing[J]. Hepatology, 2017,65(2):529-543.
23 Pendleton KE, ChenB, LiuK, et al. The U6 snRNA m(6)A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention[J]. Cell, 2017,169(5):824-835.
24 WardaAS, KretschmerJ, HackertP, et al. Human METTL16 is a N(6)-methyladenosine (m(6)A) methyltransferase that targets pre-mRNAs and various non-coding RNAs[J]. EMBO Rep, 2017,18(11):2004-2014.
25 ShimaH, MatsumotoM, IshigamiY, et al. S-Adenosylmethionine Synthesis Is Regulated by Selective N(6)-Adenosine Methylation and mRNA Degradation Involving METTL16 and YTHDC1[J]. Cell Rep, 2017,21(12):3354-3363.
26 SchwartzS, MumbachMR, JovanovicM, et al. Perturbation of m6A writers reveals two distinct classes of mRNA methylation at internal and 5' sites[J]. Cell Rep, 2014,8(1):284-296.
27 PingXL, SunBF, WangL, et al. Mammalian WTAP is a regulatory subunit of the RNA N6-methyladenosine methyltransferase[J]. Cell Res, 2014,24(2):177-189.
28 SorciM, IannielloZ, CrucianiS, et al. METTL3 regulates WTAP protein homeostasis[J]. Cell Death Dis, 2018,9(8):796.
29 XiZ, XueY, ZhengJ, et al. WTAP Expression Predicts Poor Prognosis in Malignant Glioma Patients[J]. J Mol Neurosci, 2016,60(2):131-136.
30 LiBQ, HuangS, ShaoQQ, et al. WT1-associated protein is a novel prognostic factor in pancreatic ductal adenocarcinoma[J]. Oncol Lett, 2017,13(4):2531-2538.
31 TangJ, WangF, ChengG, et al. Wilms' tumor 1-associating protein promotes renal cell carcinoma proliferation by regulating CDK2 mRNA stability[J]. J Exp Clin Cancer Res, 2018,37(1):40.
32 GerkenT, GirardCA, TungYC, et al. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase[J]. Science, 2007,318(5855):1469-1472.
33 JiaG, FuY, ZhaoX, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011,7(12):885-887.
34 ZhaoX, YangY, SunBF, et al. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis[J]. Cell Res, 2014,24(12):1403-1419.
35 JiaG, FuY, ZhaoX, et al. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO[J]. Nat Chem Biol, 2011,7(12):885-887.
36 TanA, DangY, ChenG, et al. Overexpression of the fat mass and obesity associated gene (FTO) in breast cancer and its clinical implications[J]. Int J Clin Exp Pathol, 2015,8(10):13405-13410.
37 SigurdsonAJ, BrennerAV, RoachJA, et al. Selected single-nucleotide polymorphisms in FOXE1, SERPINA5, FTO, EVPL, TICAM1 and SCARB1 are associated with papillary and follicular thyroid cancer risk: replication study in a German population[J]. Carcinogenesis, 2016,37(7):677-684.
38 LiZ, WengH, SuR, et al. FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N(6)-Methyladenosine RNA Demethylase[J]. Cancer Cell, 2017,31(1):127-141.
39 ZhouS, BaiZ L, XiaD, et al. FTO regulates the chemo-radiotherapy resistance of cervical squamous cell carcinoma (CSCC) by targeting beta-catenin through mRNA demethylation[J]. Mol Carcinog, 2018,57(5):590-597.
40 MauerJ, LuoX, BlanjoieA, et al. Reversible methylation of m(6)Am in the 5' cap controls mRNA stability[J]. Nature, 2017,541(7637):371-375.
41 SuR, DongL, LiC, et al. R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m(6)A/MYC/CEBPA Signaling[J]. Cell, 2018,172(1-2):90-105.
42 TongJ, FlavellRA, LiHB. RNA m(6)A modification and its function in diseases[J]. Front Med, 2018,12(4):481-489.
43 ZhangC, SamantaD, LuH, et al. Hypoxia induces the breast cancer stem cell phenotype by HIF-dependent and ALKBH5-mediated m(6)A-demethylation of NANOG mRNA[J]. Proc Natl Acad Sci USA, 2016,113(14):E2047-E2056.
44 ZhangS, ZhaoBS, ZhouA, et al. m(6)A Demethylase ALKBH5 Maintains Tumorigenicity of Glioblastoma Stem-like Cells by Sustaining FOXM1 Expression and Cell Proliferation Program[J]. Cancer Cell, 2017,31(4):591-606.
45 HeY, HuH, WangY, et al. ALKBH5 Inhibits Pancreatic Cancer Motility by Decreasing Long Non-Coding RNA KCNK15-AS1 Methylation[J]. Cell Physiol Biochem, 2018,48(2):838-846.
46 WangX, LuZ, GomezA, et al. N6-methyladenosine-dependent regulation of messenger RNA stability[J]. Nature, 2014,505(7481):117-120.
47 XiaoW, AdhikariS, DahalU, et al. Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing[J]. Mol Cell, 2016,61(4):507-519.
48 ZhaoX, ChenY, MaoQ, et al. Overexpression of YTHDF1 is associated with poor prognosis in patients with hepatocellular carcinoma[J]. Cancer Biomark, 2018,21(4):859-868.
49 LiJ, MengS, XuM, et al. Downregulation of N(6)-methyladenosine binding YTHDF2 protein mediated by miR-493-3p suppresses prostate cancer by elevating N(6)-methyladenosine levels[J]. Oncotarget, 2018,9(3):3752-3764.
50 封冰,陈龙邦.微小RNA与表观遗传调控:肿瘤治疗新策略[J]. 医学研究生学报, 2011, 24(1): 92-95.
51 LiA, ChenYS, PingXL, et al. Cytoplasmic m(6)A reader YTHDF3 promotes mRNA translation[J]. Cell Res, 2017,27(3):444-447.
52 韦秀望,易晓明,唐朝朋,等.肾细胞癌组织中的组蛋白甲基化酶表达及其临床意义[J].医学研究生学报, 2015, 28(10): 1048-1052.
53 YinY, LongJ, SunY, et al. The function and clinical significance of eIF3 in cancer[J]. Gene, 2018,673:130-133.
54 LiZ, LinS, JiangT, et al. Overexpression of eIF3e is correlated with colon tumor development and poor prognosis[J]. Int J Clin Exp Pathol, 2014,7(10):6462-6474.
55 ChoeJ, LinS, ZhangW, et al. mRNA circularization by METTL3-eIF3h enhances translation and promotes oncogenesis[J]. Nature, 2018,561(7724):556-560.
56 段松.前列腺癌组织中Skp2的表达及其与前列腺癌术后复发的关系[J].东南国防医药,2016,18(1):47-50.
57 黄楚恒,李天然,黄晓斌,等.转移相关基因干扰对肝癌转移潜能的影响[J].东南国防医药,2016,18(3):225-229,236.

相似文献/References:

备注/Memo

备注/Memo:
收稿日期:2019-01-15
更新日期/Last Update: 2019-07-11