|本期目录/Table of Contents|

[1]唐家优综述,彭艳审校.NK细胞相关免疫检查位点的研究进展[J].医学研究与战创伤救治(原医学研究生学报),2020,22(2):183-187.[doi:10.3969/j.issn.1672-271X.2020.02.015]
 TANG Jia you reviewing,PENG Yan checking.Progress on NK cellrelated immune checkpoint[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2020,22(2):183-187.[doi:10.3969/j.issn.1672-271X.2020.02.015]
点击复制

NK细胞相关免疫检查位点的研究进展()

《医学研究与战创伤救治》(原医学研究生学报)[ISSN:1672-271X/CN:32-1713/R]

卷:
第22卷
期数:
2020年2期
页码:
183-187
栏目:
综述
出版日期:
2020-03-11

文章信息/Info

Title:
Progress on NK cellrelated immune checkpoint
作者:
唐家优综述彭艳审校
作者单位:541004 桂林,广西师范大学生命科学学院(唐家优);541004 桂林,广西师范大学药用资源化学与药物分子工程国家重点实验室(彭艳)
Author(s):
TANG Jiayou1 reviewing PENG Yan2 checking
(1.College of Life Sciences, Guangxi Normal University, Guilin 541004, Guangxi, China; 2.State Key Laboratory for Chemistry and Molecules Engineering of Medicinal Resources, Guangxi Normal University, Guilin 541004, Guangxi, China)
关键词:
NK细胞NK细胞受体免疫检查位点免疫治疗
Keywords:
natural killer cells natural killer cell receptors immune checkpoint immunotherapy
分类号:
R73
DOI:
10.3969/j.issn.1672-271X.2020.02.015
文献标志码:
A
摘要:
自然杀伤(NK)细胞是机体内重要的免疫细胞。NK细胞的多种受体(PD1、NKG2A、TIGIT、TIM3等)具有充当抗肿瘤免疫检查位点的潜力;通过对这些受体的活性进行激活或抑制,使NK细胞正常发挥免疫调控作用,为肿瘤的免疫治疗提供了新的研究方向。文章主要就NK细胞受体作为肿瘤免疫治疗的免疫检查位点以及检查位点相关抑制剂的研究现状进行综述。
Abstract:
Natural killer (NK) cells are of importance immune cells in the body. Multiple receptors of NK cells (PD1, NKG2A, TIGIT, TIM3, etc.) have the potential to act as antitumor immune checkpoint. By activating or inhibiting the activity of these receptors, NK cells can normally play their immune regulatory role, which offers a new research direction for the immunotherapy of tumors. This article mainly summarizes the advances of NK cell receptors as immune checkpoint for tumor immunotherapy and checkpoint relates inhibitors.

参考文献/References:

[1]Stojanovic A, Cerwenka A. Checkpoint inhibition: NK cells enter the scene[J]. Nat Immunol, 2018,19(7):650652.
[2]周建光, 杨梅, 曹海涛, 等. 淋巴细胞亚群的检测在临床的应用[J]. 东南国防医药, 2015,17(3):298300.
[3]Wilson R, Evans T, Fraser AR, et al. Immune checkpoint inhibitors: new strategies to checkmate cancer[J]. Clin Exp Immunol, 2018,191(2):133148.
[4]LópezSoto A, Gonzalez S, Smyth MJ, et al. Control of Metastasis by NK Cells[J]. Cancer Cell, 2017,32(2):135154.
[5]许文, 陈威巍. CD56~(bright)自然杀伤细胞亚群在人免疫缺陷病毒/丙型肝炎病毒共感染中的研究进展[J]. 医学研究生学报, 2012,25(1):103106.
[6]Guillerey C, Huntington ND, Smyth MJ. Targeting natural killer cells in cancer immunotherapy[J]. Nat Immunol, 2016,17(9):10251036.
[7]Lee DA. Cellular therapy: Adoptive immunotherapy with expanded natural killer cells[J]. Immunol Rev, 2019,290(1):8599.
[8]Baggio L, Laureano M, Silla LMDR, et al. Natural killer cell adoptive immunotherapy: Coming of age[J]. Clin Immunol, 2017,177:311.
[9]Grzywacz B, Moench L, McKenna D, et al. Natural Killer Cell Homing and Persistence in the Bone Marrow After Adoptive Immunotherapy Correlates With Better Leukemia Control[J]. J Immunother, 2019,42(2):6572.
[10]Davis ZB, Felices M, Verneris MR, et al. Natural Killer Cell Adoptive Transfer Therapy[J]. The Cancer Journal, 2015,21(6):486491.
[11]Levy EM, Roberti MP, Mordoh J. Natural killer cells in human cancer: from biological functions to clinical applications[J]. J Biomed Biotechnol, 2011,2011:676198.
[12]Sanseviero E, O Brien EM, Karras JR, et al. Anti–CTLA4 Activates Intratumoral NK Cells and Combined with IL15/IL15Rα Complexes Enhances Tumor Control[J]. Cancer Immunol Res, 2019,7(8):13711380.
[13]Hsu J, Hodgins JJ, Marathe M, et al. Contribution of NK cells to immunotherapy mediated by PD1/PDL1 blockade[J]. J Clin Invest, 2018,128(10):46544668.
[14]LorenzoHerrero S, LópezSoto A, SordoBahamonde C, et al. NK CellBased Immunotherapy in Cancer Metastasis[J]. Cancers, 2019,11(1):29.
[15]Mace EM, Orange JS. Emerging insights into human health and NK cell biology from the study of NK cell deficiencies[J]. Immunol Rev, 2019,287(1):202225.
[16]Rezvani K, Rouce R, Liu E, et al. Engineering Natural Killer Cells for Cancer Immunotherapy[J]. Mol Ther, 2017,25(8):17691781.
[17]Niehrs A, GarciaBeltran WF, Norman PJ, et al. A subset of HLADP molecules serve as ligands for the natural cytotoxicity receptor NKp44[J]. Nat Immunol, 2019,20(9):11291137.
[18]Zhang C, Wang X, Li S, et al. NKG2A is a NK cell exhaustion checkpoint for HCV persistence[J]. Nat Commun, 2019,10(1):1507.
[19]Zhang Q, Bi J, Zheng X, et al. Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent antitumor immunity[J]. Nat Immunol, 2018,19(7):723732.
[20]André P, Denis C, Soulas C, et al. AntiNKG2A mAb Is a Checkpoint Inhibitor that Promotes Antitumor Immunity by Unleashing Both T and NK Cells[J]. Cell, 2018,175(7):17311743.
[21]Campbell KS, Purdy AK. Structure/function of human killer cell immunoglobulinlike receptors: lessons from polymorphisms, evolution, crystal structures and mutations[J]. Immunology, 2011,132(3):315325.
[22]Fauriat C, Long EO, Ljunggren H, et al. Regulation of human NKcell cytokine and chemokine production by target cell recognition[J]. Blood, 2010,115(11):21672176.
[23]Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks[J]. Nat Rev Cancer, 2016,16(1):719.
[24]Kim N, Lee HH, Lee HJ, et al. Natural killer cells as a promising therapeutic target for cancer immunotherapy[J]. Arch Pharm Res, 2019,42(7):591606.
[25]Campbell KS, Hasegawa J. Natural killer cell biology: An update and future directions[J]. J Allergy Clin Immun, 2013,132(3):536544.
[26]Fan Y, Zhang C, Jin S, et al. Progress of immune checkpoint therapy in the clinic (Review)[J]. Oncol Rep, 2018,41(1):314.
[27]Tang J, Yu JX, HubbardLucey VM, et al. Trial watch: The clinical trial landscape for PD1/PDL1 immune checkpoint inhibitors[J]. Nat Rev Drug Discov, 2018,17(12):854855.
[28]Muntasell A, Ochoa MC, Cordeiro L, et al. Targeting NKcell checkpoints for cancer immunotherapy[J]. Curr Opin Immunol, 2017,45:7381.
[29]Pesce S, Greppi M, Tabellini G, et al. Identification of a subset of human natural killer cells expressing high levels of programmed death 1: A phenotypic and functional characterization[J]. J Allergy Clin Immun, 2017,139(1):335346.
[30]Chiossone L, Vienne M, Kerdiles YM, et al. Natural killer cell immunotherapies against cancer: checkpoint inhibitors and more[J]. Semin Immunol, 2017,31:5563.
[31]Rapaport AS, Schriewer J, Gilfillan S, et al. The Inhibitory Receptor NKG2A Sustains VirusSpecific CD8+ T Cells in Response to a Lethal Poxvirus Infection[J]. Immunity, 2015,43(6):11121124.
[32]van Montfoort N, Borst L, Korrer M J, et al. NKG2A Blockade Potentiates CD8 T Cell Immunity Induced by Cancer Vaccines[J]. Cell, 2018,175(7):17441755.
[33]McWilliams EM, Mele JM, Cheney C, et al. Therapeutic CD94/NKG2A blockade improves natural killer cell dysfunction in chronic lymphocytic leukemia[J]. Oncoimmunology, 2016,5(10):e1226720.
[34]Ruggeri L, Urbani E, Andre P, et al. Effects of antiNKG2A antibody administration on leukemia and normal hematopoietic cells[J]. Haematologica, 2016,101(5):626633.
[35]Ferris RL, Lenz H, Trotta AM, et al. Rationale for combination of therapeutic antibodies targeting tumor cells and immune checkpoint receptors: Harnessing innate and adaptive immunity through IgG1 isotype immune effector stimulation[J]. Cancer Treat Rev, 2018,63:4860.
[36]André P, Denis C, Soulas C, et al. AntiNKG2A mAb Is a Checkpoint Inhibitor that Promotes Antitumor Immunity by Unleashing Both T and NK Cells[J]. Cell, 2018,175(7):17311743.
[37]Battella S, Cox MC, Santoni A, et al. Natural killer (NK) cells and antitumor therapeutic mAb: unexplored interactions[J]. J Leukoc Biol, 2016,99(1):8796.
[38]Bi J, Zhang Q, Liang D, et al. Tcell Ig and ITIM domain regulates natural killer cell activation in murine acute viral hepatitis[J]. Hepatology, 2014,59(5):17151725.
[39]Bi J, Zheng X, Chen Y, et al. TIGIT safeguards liver regeneration through regulating natural killer cellhepatocyte crosstalk[J]. Hepatology, 2014,60(4):13891398.
[40]Johnston RJ, CompsAgrar L, Hackney J, et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function[J]. Cancer Cell, 2014,26(6):923937.
[41]Zheng M, Sun R, Wei H, et al. NK Cells Help Induce Anti–Hepatitis B Virus CD8+T Cell Immunity in Mice[J]. J Immunol, 2016,196(10):41224131.
[42]Liu Y, Zheng J, Liu Y, et al. Uncompromised NK cell activation is essential for virusspecific CTL activity during acute influenza virus infection[J]. Cell Mol Immunol, 2018,15(9):827837.
[43]Stojanovic A, Cerwenka A. Checkpoint inhibition: NK cells enter the scene[J]. Nat Immunol, 2018,19(7):650652.
[44]Dougall WC, Kurtulus S, Smyth MJ, et al. TIGIT and CD96: new checkpoint receptor targets for cancer immunotherapy[J]. Immunol Rev, 2017,276(1):112120.
[45]Vivier E, Tomasello E, Paul P. Lymphocyte activation via NKG2D: towards a new paradigm in immune recognition?[J]. Curr Opin Immunol, 2002,14(3):306311.
[46]Spear P, Wu MR, Sentman ML, et al. NKG2D ligands as therapeutic targets[J]. Cancer Immun, 2013,13:8.
[47]Guerra N, Tan YX, Joncker NT, et al. NKG2DDeficient Mice Are Defective in Tumor Surveillance in Models of Spontaneous Malignancy[J]. Immunity, 2008,28(4):571580.
[48]Raulet DH, Gasser S, Gowen BG, et al. Regulation of Ligands for the NKG2D Activating Receptor[J]. Annu Rev Immunol, 2013,31(1):413441.
[49]Deng W, Gowen BG, Zhang L, et al. A shed NKG2D ligand that promotes natural killer cell activation and tumor rejection[J]. Science, 2015,348(6230):136139.
[50]Ferrari De Andrade L, Tay RE, Pan D, et al. Antibodymediated inhibition of MICA and MICB shedding promotes NK celldriven tumor immunity[J]. Science, 2018,359(6383):15371542.
[51]Sasidharan Nair V, Toor SM, Taha RZ, et al. DNA methylation and repressive histones in the promoters of PD1, CTLA4, TIM3, LAG3, TIGIT, PDL1, and galectin9 genes in human colorectal cancer[J]. Clin Epigenetics, 2018,10(1):104.
[52]Nielsen N, Odum N, Urso B, et al. Cytotoxicity of CD56(bright) NK cells towards autologous activated CD4+ T cells is mediated through NKG2D, LFA1 and TRAIL and dampened via CD94/NKG2A[J]. PLoS One, 2012,7(2):e31959.
[53]Gallois A, Silva I, Osman I, et al. Reversal of natural killer cell exhaustion by TIM3 blockade[J]. Oncoimmunology, 2015,3(12):e946365.
[54]Da Silva IP, Gallois A, JimenezBaranda S, et al. Reversal of NKCell Exhaustion in Advanced Melanoma by Tim3 Blockade[J]. Cancer Immunol Res, 2014,2(5):410422.
[55]Rangachari M, Zhu C, Sakuishi K, et al. Bat3 promotes T cell responses and autoimmunity by repressing Tim3mediated cell death and exhaustion[J]. Nat Med, 2012,18(9):13941400.
[56]Zhou Q, Munger ME, Veenstra RG, et al. Coexpression of Tim3 and PD1 identifies a CD8+ Tcell exhaustion phenotype in mice with disseminated acute myelogenous leukemia[J]. Blood, 2011,117(17):45014510.

相似文献/References:

[1]周建光,杨 梅,曹海涛 综述,等.淋巴细胞亚群的检测在临床的应用[J].医学研究与战创伤救治(原医学研究生学报),2015,17(03):298.[doi:10.3969/j.issn.1672-271X.2015.03.023]
[2]薛梅,刘静,朱玲,等.航空环境对空军飞行员外周血B细胞和自然杀伤细胞及T细胞亚群的影响[J].医学研究与战创伤救治(原医学研究生学报),2018,20(04):435.[doi:10.3969/j.issn.1672-271X.2018.04.026]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81673473)
更新日期/Last Update: 2020-03-11