|本期目录/Table of Contents|

[1]杨玉琼,孟翔峰.自酸蚀树脂粘接剂合成纳米银对唾液生物膜抗菌性的初步研究[J].医学研究与战创伤救治(原医学研究生学报),2020,22(4):346-350.[doi:10.3969/j.issn.1672-271X.2020.04.003]
 YANG Yu-qiong,MENG Xiang-feng.Antibacterial activity of self-etching adhesive resins containing silver nanoparticles synthesized in situ on human plaque microcosm biofilms[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2020,22(4):346-350.[doi:10.3969/j.issn.1672-271X.2020.04.003]
点击复制

自酸蚀树脂粘接剂合成纳米银对唾液生物膜抗菌性的初步研究()

《医学研究与战创伤救治》(原医学研究生学报)[ISSN:1672-271X/CN:32-1713/R]

卷:
第22卷
期数:
2020年4期
页码:
346-350
栏目:
基础研究
出版日期:
2020-07-20

文章信息/Info

Title:
Antibacterial activity of self-etching adhesive resins containing silver nanoparticles synthesized in situ on human plaque microcosm biofilms
作者:
杨玉琼孟翔峰
作者单位:210008南京,南京大学医学院附属口腔医院(南京市口腔医院)修复科(杨玉琼、孟翔峰)
Author(s):
YANG Yu-qiongMENG Xiang-feng
(Department of Prosthodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing 210008, Jiangsu, China)
关键词:
纳米银自酸蚀树脂粘接剂生物膜抗菌性
Keywords:
silver nanoparticles self-etching adhesive resin antibacterial activity biofilms
分类号:
R78
DOI:
10.3969/j.issn.1672-271X.2020.04.003
文献标志码:
A
摘要:
目的运用原位法合成纳米银对自酸蚀树脂粘接剂进行抗菌改性。方法将2-乙基己酸银添加到甲基丙烯酸叔丁基氨基乙酯中,震荡混匀后制成8%质量分数的银源溶液,再将其分别以0%、0.1%、0.2%质量分数银(Ag)添加到两步法自酸蚀树脂粘接剂Clearfil SE Bond(CSB)的粘接剂部分及一步法自酸蚀树脂粘接剂Clearfil SE One(CSO)中,光照固化后制得圆盘状试件。以透明聚酯薄膜为空白对照组;以 0%Ag CSB、0%Ag CSO为对照组;以 0.1%Ag CSB、0.1%Ag CSO、0.2%Ag CSB、0.2%Ag CSO为含银实验组。采用透射电镜观察粘接剂中生成纳米银的形貌、粒径及分散情况;采用菌落计数及活/死菌染色来评价其对唾液生物膜的抗菌性能。结果透射电镜结果显示实验组试件中有分散均匀的纳米银颗粒生成,0.1%Ag CSB组、0.2%Ag CSB组、0.1%Ag CSO组、0.2%Ag CSO组的纳米银平均粒径分别为(10.82±3.66)nm、(8.84±3.21)nm、(21.38±5.39)nm、(17.77±4.72)nm。菌落计数换算成的抗菌率结果显示,0%Ag CSO组的抗菌率[(32.12±10.55)%]显著高于0%Ag CSB组[(14.66±5.63)%](P<0.05),但显著低于CSB和CSO的0.1%Ag组[(56.71±7.89)%、(63.52±5.91)%]和0.2%Ag组[(77.30±4.45)%、(83.75±8.59)%]的抗菌率(P<0.05);CSB和CSO的0.2%Ag组的抗菌率显著高于它们各自的0.1%Ag组(P<0.05);在0.1%Ag或0.2%Ag浓度下,CSB和CSO组间的抗菌率比较差异无统计学意义(P>0.05)。活/死菌染色结果显示对照组表面有大量活菌覆盖,而实验组表面有大量死菌覆盖。结论在自酸蚀树脂粘接接剂中能够原位合成纳米银,并对唾液生物膜具备一定的抗菌性。
Abstract:
ObjectiveTo incorporate silver nanoparticles into two different types of self-etching adhesive resins with a technique of in situ synthesized silver nanoparticles, and evaluate the antibacterial activity of the new dental adhesive resins.MethodsThe sliver 2-ethylhexanoate was dissolved into 2- (tert-butylamino) ethyl methacrylate to form a silver amine solution with a mass fraction of 8%. The silver amine solution was added to the two-step self-etching adhesive resin Clearfil SE Bond (CSB) and one-step self-etching adhesive resin Clearfil SE One (CSO), respectively. After curing by light, resin disks with silver mass fractions of 0%, 0.1%and 0.2% were obtained. The transparent polyester film was used as the blank control group. 0%Ag CSB and 0%Ag CSO were used as the control group. 0.1%Ag CSB, 0.1%Ag CSO, 0.2%Ag CSB and 0.2%Ag CSO were used as the silver-containing experimental group. The morphology and particle size distribution of nano-silver was observed by transmission electron microscope (TEM). The antibacterial activity of adhesive resins against biofilms were evaluated by Colony-forming unit (CFU) counts and live/dead bacteria staining.ResultsTEM results showed that the silver-containing specimens after solidification had uniform dispersion of nano-silver particles. The average particle diameters of silver nanoparticles in the 0.1%Ag CSB group, 0.2%Ag CSB group, 0.1%Ag CSO group, and 0.2%Ag CSO group were (10.82±3.66)nm, (8.84±3.21)nm, (21.38±5.39) nm, (17.77±4.72)nm, respectively. The antibacterial rate converted from CFU counts was displayed as follows: The antibacterial rate of 0% Ag CSO Group [(32.12±10.55)%] was significantly higher than that of 0% Ag CSB Group [(14.66±5.63)%] (P<0.05), but significantly lower than that of 0.1% Ag Group [(56.71±7.89)%, (63.52±5.91)%] and 0.2% Ag Group [(77.30±4.45)%, (83.75±8.59)%] (P<0.05). The antibacterial rate of 0.2% Ag group of CSB and CSO was significantly higher than that of their respective 0.1% Ag group (P<0.05). For the concentration of 0.1% Ag or 0.2% Ag, there was no significant difference between the CSB and CSO groups (P>0.05). Live/dead bacteria staining results showed that the surface of control group was covered with a large number of live bacteria, while the experimental groups were covered with a large number of dead bacteria.ConclusionThe application of in situ synthesized silver nanoparticles to self-etching adhesive resins could obtain antibacterial activity against biofilms in saliva.

参考文献/References:

[1]兰俊,毛钊,赵俊, 等.2种黏结剂用于后牙Ⅱ类洞边缘微渗漏的对比研究[J].医学研究生学报,2010,23(9):928-930.
[2]Betancourt DE, Baldion PA, Castellanos JE. Resin-Dentin Bonding Interface: Mechanisms of Degradation and Strategies for Stabilization of the Hybrid Layer[J]. Int J Biomater, 2019. doi: 10.1155/2019/5268342.
[3]Waldman GL, Vaidyanathan TK, Vaidyanathan J. Microleakage and Resin-to-Dentin Interface Morphology of Pre-Etching versus Self-Etching Adhesive Systems[J]. Open Dent J, 2008, 2:120-125.
[4]Rizzello L, Pompa PP. Nanosilver-based antibacterial drugs and devices: mechanisms, methodological drawbacks, and guidelines[J]. Chem Soc Rev, 2014, 43(5):1501-1518.
[5]Metin-Gürsoy G, Taner L, Akca G. Nanosilver coated orthodontic brackets: in vivo antibacterial properties and ion release[J]. Eur J Orthod, 2017, 39(1):9-16.
[6]Kumar A, Vemula PK, Ajayan PM, et al. Silver-nanoparticle-embedded antimicrobial paints based on vegetable oil[J]. Nat Mater, 2008, 7(3):236-241.
[7]Fan C, Chu L, Rawls HR, et al. Development of an antimicrobial resin—A pilot study[J]. Dent Mater,2011,27(4):322-328.
[8]Pan Y, Wang J, Yang Y, et al. Study on Preparation of Antibacterial Dental Resin Materials[J]. J Biomater Tiss Eng, 2018, 8(11):1580-1587.
[9]范玥, 孟翔峰. 原位法合成纳米银对树脂粘结剂抗菌改性的应用研究[J]. 口腔医学研究, 2018, 34(2):161-164.
[10]Ren L, Pan Y, Liang Q, et al. In Situ Synthesis of Dental Resin Matrix Containing Silver Nanoparticles[J]. J Nanosci Nanotechnol, 2019, 19(9):5774-5782.
[11]Gou YP, Meghil MM, Pucci CR, et al. Optimizing resin-dentin bond stability using a bioactive adhesive with concomitant antibacterial properties and anti-proteolytic activities[J]. Acta Biomater, 2018, 75:171-182.
[12]Prema P, Thangapandiyan S, Immanuel G. CMC stabilized nano silver synthesis, characterization and its antibacterial and synergistic effect with broad spectrum antibiotics[J]. Carbohydr Polym, 2017, 158:141-148.
[13]Cheng L, Weir MD, Xu HH, et al. Antibacterial amorphous calcium phosphate nanocomposites with a quaternary ammonium dimethacrylate and silver nanoparticles[J]. Dent Mater, 2012, 28(5):561-572.
[14]魏欣欣, 李明春, 马守栋. 纳米银溶液的稳定性研究[J]. 中国医院药学杂志, 2016, 36(16):1355-1358.
[15]Trumpaite-Vanagiene R, Bukelskiene V, Aleksejuniene J, et al. Cytotoxicity of commonly used luting cements -An in vitro study[J]. Dent Mater J, 2015, 34(3):294-301.
[16]Miletic V, Santini A, Trkulja I. Quantification of monomer elution and carbon-carbon double bonds in dental adhesive systems using HPLC and micro-Raman spectroscopy[J]. J Dent, 2009, 37(3):177-184.
[17]Brown JL, Johnston W, Delaney C, et al. Polymicrobial oral biofilm models: simplifying the complex[J]. J Med Microbial, 2019, 68(11):1573-1584.
[18]Bowen WH, Burne RA, Wu H, et al. Oral Biofilms: Pathogens, Matrix, and Polymicrobial Interactions in Microenvironments[J]. Trends Microbiol, 2018, 26(3):229-242.

相似文献/References:

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81470781);江苏省卫生健康委科研项目(LGY2018003)
更新日期/Last Update: 2020-07-13