[1]Cinzia P, Albert-Laszló B, Gianluigi C, et al. Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart[J]. Cardiovasc Res, 2017, 113 (7):725-736.
[2]Kalogeris T, Baines CP, Krenz M, et al. Ischemia/Reperfusion[J]. Compr Physiol, 2016,7(1):113-170.
[3]Kalogeris T, Baines CP, Krenz M, et al. Cell biology of ischemia/reperfusion injury[J]. Int Rev Cell Mol Biol, 2012,298:229-317.
[4]Tang J, Zhuang S. Histone acetylation and DNA methylation in ischemia/reperfusion injury[J]. Clin Sci (Lond), 2019,133(4):597-609.
[5]Prachayasittikul V, Prathipati P, Pratiwi R, et al. Exploring the epigenetic drug discovery landscape[J]. Expert Opin Drug Discov, 2017,12(4):345-362.
[6]邸婷婷,卞涛.DNA甲基化在COPD发病机制中的研究进展[J].东南国防医药,2018,20(6):614-617.
[7]王震凯,汪芳裕.DNA甲基化与肿瘤[J].医学研究生学报,2011,24(6):641-645.
[8]Blaschke K, Ebata KT, Karimi MM, et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells[J]. Nature, 2013,500(7461):222-226.
[9]Lou S, Lee HM, Qin H, et al. Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation[J]. Genome Biol, 2014,15(7):408.
[10]Franco R, Schoneveld O, Georgakilas AG, et al. Oxidative stress, DNA methylation and carcinogenesis[J]. Cancer Lett, 266(1): 6-11.
[11]Thienpont B, Steinbacher J, Zhao H, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity[J]. Nature,2016,537(7618):63-68.
[12]Heylen L, Thienpont B, Naesens M, et al. The Emerging Role of DNA Methylation in Kidney Transplantation: A Perspective[J]. Am J Transplant, 2016,16(4):1070-1078.
[13]Abdellatif M, Sedej S, Carmona-Gutierrez D, Madeo F, et al.Autophagy in Cardiovascular Aging[J]. Circ Res, 2018,123(7):803-824.
[14]Livingston MJ, Wang J, Zhou J, et al. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys[J]. Autophagy, 2019,15(12):2142-2162.
[15]梁丹阳, 戴汉川. PINK1/Parkin通路在线粒体自噬氧化损伤中的作用[J].中国细胞生物学学报,2018,40(1):116-123.
[16]Rasool S, Trempe JF. New insights into the structure of PINK1 and the mechanism of ubiquitin phosphorylation[J]. Crit Rev Biochem Mol Biol, 2018,53(5):515-534.
[17]Sekine S, Youle RJ. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol[J]. BMC Biol, 2018,16(1):2.
[18]Zhou LY, Zhai M, Huang Y, et al. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/FAM65B pathway[J]. Cell Death Differ, 2019,26(7):1299-1315.
[19]封冰,陈龙邦.微小RNA与表观遗传调控:肿瘤治疗新策略[J].医学研究生学报,2011,24(1):92-95.
[20]Wu H, Liu C, Yang Q, et al. MIR145-3p promotes autophagy and enhances bortezomib sensitivity in multiple myeloma by targeting HDAC4[J]. Autophagy, 2020,16(4):683-697.
[21]Huang J, Zhao L, Fan Y, et al. The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression[J]. Nat Commun, 2019,10(1):2876.
[22]Palma CA, Al Sheikha D, Lim TK, et al. MicroRNA-155 as an inducer of apoptosis and cell differentiation in Acute Myeloid Leukaemia[J]. Mol Cancer, 2014,13:79.
[23]Ju S, Liang Z, Li C, et al. The effect and mechanism of miR-210 in down-regulating the autophagy of lung cancer cells[J]. Pathol Res Pract, 2019,215(3):453-458.
[24]Zhang X, Fernández-Hernando C. miR-33 Regulation of Adaptive Fibrotic Response in Cardiac Remodeling[J]. Circ Res, 2017,120(5):753-755.
[25]Panico C, Condorelli G. microRNA-132: a new biomarker of heart failure at last?[J]Eur J Heart Fail, 2018,20(1):86-88.
[26]Zhang C, Liao P, Liang R, et al. Epigallocatechin gallate prevents mitochondrial impairment and cell apoptosis by regulating miR-30a/p53 axis[J]. Phytomedicine, 2019,61:152845.
[27]Roman-Gomez J, Agirre X, Jiménez-Velasco A, et al. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia[J]. J Clin Oncol, 2009,27(8):1316-1322.
[28]Ortiz IMDP, Barros-Filho MC, Dos Reis MB, et al. Loss of DNA methylation is related to increased expression of miR-21 and miR-146b in papillary thyroid carcinoma[J]. Clin Epigenetics, 2018,10(1):144.
[29]Vera O, Jimenez J, Pernia O, et al. DNA Methylation of miR-7 is a Mechanism Involved in Platinum Response through MAFG Overexpression in Cancer Cells[J]. Theranostics, 2017,7(17):4118-4134.
[30]YanHua W, YinJu H, Hui Z, et al. DNA Hypomethylation of miR-30a Mediated the Protection of Hypoxia Postconditioning Against Aged Cardiomyocytes Hypoxia/Reoxygenation Injury Through Inhibiting Autophagy[J]. Circ J, 2020,84(4):616-625.
[31]Wang LA, Nguyen DH, Mifflin SW, et al. CRHR2 (Corticotropin-Releasing Hormone Receptor 2) in the Nucleus of the Solitary Tract Contributes to Intermittent Hypoxia-Induced Hypertension[J]. Hypertension, 2018,72(4):994-1001.
[32]Crunkhorn S. Cardiovascular disease: CRHR2 blockade prevents heart failure[J]. Nat Rev Drug Discov, 2017,16(8):530.
[33]Basman C, Agrawal P, Knight R, et al. Cardioprotective Utility of Urocortin in Myocardial Ischemia-Reperfusion Injury: Where do We Stand?[J] Curr Mol Pharmacol, 2018,11(1):32-38.
[34]Lagranha CJ, Deschamps A, Aponte A, et al. Sex differences in the phosphorylation of mitochondrial proteins result in reduced production of reactive oxygen species and cardioprotection in females[J]. Circ Res, 2010,106(11):1681-1691.
[35]Cong B, Zhu X, Cao B, et al. Estrogens protect myocardium against ischemia/reperfusion insult by up-regulation of CRH receptor type 2 in female rats[J]. Int J Cardiol, 2013,168(5):4755-4760.
[36]Cong B, Xu Y, Sheng H, et al. Cardioprotection of 17β-estradiol against hypoxia/reoxygenation in cardiomyocytes is partly through up-regulation of CRH receptor type 2[J]. Mol Cell Endocrinol, 2014,382(1):17-25.
[37]Singh RM, Emanuel C, Constantinos P, et al. Protein kinase C and cardiac dysfunction: a review[J]. Heart Fail Rev, 2017,22(6):843-859.
[38]Patterson AJ, Daliao X, Fuxia X, et al. Hypoxia-derived oxidative stress mediates epigenetic repression of PKCε gene in foetal rat hearts[J]. Cardiovasc Res, 2012,93(2):843-859.
[39]Patterson AJ, Chen M, Xue Q, et al. Chronic prenatal hypoxia induces epigenetic programming of PKC{epsilon} gene repression in rat hearts[J]. Circ Res, 2010,107(3):365-373.
[40]Zhang HT, Xue JH, Zhang ZW, et al. Cold-inducible RNA-binding protein inhibits neuron apoptosis through the suppression of mitochondrial apoptosis[J]. Brain Res, 2015,1622: 474-483.
[41]Liu Y, Xing J, Zhang H, et al. Chronic hypoxia-induced Cirbp hypermethylation attenuates hypothermic cardioprotection via down-regulation of ubiquinone biosynthesis[J]. Sci Transl Med, 2019,11(489):eaat8406.
[42]Bliksen M, Baysa A, Eide L, et al. Mitochondrial DNA damage and repair during ischemia-reperfusion injury of the heart[J]. Mol Cell Cardiol, 2015,78:9-22.
[43]Yue RC, Xia XW, Jiang JH, et al. Mitochondrial DNA oxidative damage contributes to cardiomyocyte ischemia/reperfusion-injury in rats: cardioprotective role of lycopene[J].Cell Physio, 2015,230(9): 2128-2141.
[44]Di Salvo TG, Haldar SM. Epigenetic mechanisms in heart failure pathogenesis. Circ Heart Fail[J]. United States,2014, 7(5): 850-863.
[1]庄 微综述,刘挺松审校.晚期糖基化终末产物受体在心血管疾病中的研究概况[J].医学研究与战创伤救治(原医学研究生学报),2014,16(06):629.[doi:10.3969/j.issn.1672-271X.2014.06.021]
[2]邸婷婷综述,卞涛审校.DNA甲基化在COPD发病机制中的研究进展[J].医学研究与战创伤救治(原医学研究生学报),2018,20(06):614.[doi:10.3969/j.issn.1672-271X.2018.06.012]