|本期目录/Table of Contents|

[1]高杰,丁留成,卫中庆.脂质代谢在去势抵抗性前列腺癌中的研究进展[J].医学研究与战创伤救治(原医学研究生学报),2021,23(02):169-174.[doi:10.3969/j.issn.1672-271X.2021.02.013]
 GAO Jie,DING Liu-cheng,WEI Zhong-qing.Research progress of lipid metabolism in castration-resistant prostate cancer[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2021,23(02):169-174.[doi:10.3969/j.issn.1672-271X.2021.02.013]
点击复制

脂质代谢在去势抵抗性前列腺癌中的研究进展()

《医学研究与战创伤救治》(原医学研究生学报)[ISSN:1672-271X/CN:32-1713/R]

卷:
第23卷
期数:
2021年02期
页码:
169-174
栏目:
综述
出版日期:
2021-03-22

文章信息/Info

Title:
Research progress of lipid metabolism in castration-resistant prostate cancer
作者:
高杰丁留成卫中庆
210011南京,南京医科大学第二临床医学院外科学系(高杰);210011 南京,南京医科大学第二附属医院泌尿外科(丁留成、卫中庆)
Author(s):
GAO Jie DING Liu-cheng WEI Zhong-qing
(1. Department of Surgery, The Second Clinical Medical College of Nanjing Medical University, Nanjing 210011, Jiangsu, China; 2. Department of Urology Surgery, Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, Jiangsu, China)
关键词:
前列腺癌去势抵抗脂质代谢
Keywords:
prostate cancer castration-resistant lipid metabolism
分类号:
R737.25
DOI:
10.3969/j.issn.1672-271X.2021.02.013
文献标志码:
A
摘要:
在泌尿系统中,前列腺癌(PCa)是男性最常见的恶性肿瘤,其发病率逐年上升,并逐渐成为威胁全球老年男性生存质量的重要因素。目前包括手术和药物去势治疗在内的雄激素剥夺治疗可有效缓解PCa进程,是所有阶段复发性PCa的标准治疗手段,但最终都不可避免的发展为恶性程度更高的去势抵抗性前列腺癌(CRPC)。近年来,脂代谢重编程在肿瘤领域受到广泛重视,并被认为在CRPC细胞的增殖、凋亡、迁移侵袭和维持膜稳态等多种生物学过程中发挥重要作用,还参与调控机体肿瘤免疫、耐药和内环境稳态等多种过程。文章就近年来有关CRPC中脂肪酸、胆固醇和磷脂代谢等方面的研究进展进行综述。
Abstract:
In the urinary system, prostate cancer (PCa) is the most common malignant tumor. Its incidence has increased annually, and gradually grows up to an important factor threatening the survival of elderly men around the world. At present, androgen deprivation therapy (ADT), including surgery and drug castration, can effectively alleviate the progression of PCa, which is the standard treatment for recurrent PCa at all stages, but eventually it will inevitably develop into castration-resistant prostate cancer (CRPC) with higher malignant degree. In recent years, lipid metabolism reprogramming has been paid more and more attention in the field of tumor, and it is considered to play an important role in a variety of biological processes such as proliferation, apoptosis, migration, invasion and membrane homeostasis of CRPC cells, as well as the regulation of tumor immunity, drug resistance, and homeostasis. This paper reviews the research progress on the metabolism of fatty acids, cholesterol, and phospholipids in CRPC in recent years, to provide new ideas and directions for diagnosis and treatment of CRPC.

参考文献/References:

[1]Siegel RL, Miller KD, Jemal A. Cancer statistics, 2020[J]. CA Cancer J Clin, 2020, 70(1): 7-30.
[2]Gamat M, McNeel DG. Androgen deprivation and immunotherapy for the treatment of prostate cancer[J]. Endocr Relat Cancer, 2017, 24(12): T297-T310.
[3]Liu JM, Yu CP, Chuang HC, et al. Androgen deprivation therapy for prostate cancer and the risk of autoimmune diseases[J]. Prostate Cancer Prostatic Dis, 2019, 22(3): 475-482.
[4]Russo JW, Gao C, Bhasin SS, et al. Downregulation of Dipeptidyl Peptidase 4 Accelerates Progression to Castration-Resistant Prostate Cancer[J]. Cancer Res, 2018, 78(22): 6354-6362.
[5]常惠, 张雅萌, 丁选胜. 非小细胞肺癌中脂质代谢的研究进展[J]. 中国药科大学学报, 2020, 51(1): 107-113.
[6]刘静, 关海霞. 乳头状甲状腺癌中脂质代谢相关基因表达的筛选和验证[J]. 现代肿瘤医学, 2017, 26(8): 1174-1178.
[7]佟广海, 田洋, 吴华星. 脂质组学在结直肠癌研究中的应用[J]. 实用肿瘤学杂志, 2019, 33(2): 179-182.
[8]Nishiyama T, Hoshii T. Prostate cancer: Testosterone-guided ADT for prostate cancer[J]. Nat Rev Urol, 2016, 13(4): 189-191.
[9]Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144(5): 646-674.
[10]Pavlova NN, Thompson CB. The Emerging Hallmarks of Cancer Metabolism[J]. Cell Metab, 2016, 23(1): 27-47.
[11]Chen M, Zhang J, Sampieri K, et al. An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer[J]. Nat Genet, 2018, 50(2): 206-218.
[12]Liberti MV, Locasale JW. The Warburg Effect: How Does it Benefit Cancer Cells[J]. Trends Biochem Sci, 2016, 41(3): 211-218.
[13]Kuemmerle NB, Rysman E, Lombardo PS, et al. Lipoprotein lipase links dietary fat to solid tumor cell proliferation[J]. Mol Cancer Ther, 2011, 10(3): 427-436.
[14]Gazi E, Gardner P, Lockyer NP, et al. Direct evidence of lipid translocation between adipocytes and prostate cancer cells with imaging FTIR microspectroscopy[J]. J Lipid Res, 2007, 48(8): 1846-1856.
[15]De Piano M, Manuelli V, Zadra G, et al. Lipogenic signalling modulates prostate cancer cell adhesion and migration via modification of Rho GTPases[J]. Oncogene, 2020, 39(18): 3666-3679.
[16]Awwad HM, Geisel J, Obeid R. The role of choline in prostate cancer[J]. Clin Biochem, 2012, 45(18): 1548-1553.
[17]Yue S, Li J, Lee SY, et al. Cholesteryl ester accumulation induced by PTEN loss and PI3K/AKT activation underlies human prostate cancer aggressiveness[J]. Cell Metab, 2014, 19(3): 393-406.
[18]Lloyd MD, Yevglevskis M, Lee GL, et al. alpha-Methylacyl-CoA racemase (AMACR): metabolic enzyme, drug metabolizer and cancer marker P504S[J]. Prog Lipid Res, 2013, 52(2): 220-230.
[19]Ostergren PB, Kistorp C, Fode M, et al. Metabolic consequences of gonadotropin-releasing hormone agonists vs orchiectomy: a randomized clinical study[J]. BJU Int, 2019, 123(4): 602-611.
[20]Di Sebastiano KM, Pinthus JH, Duivenvoorden WCM, et al. Glucose impairments and insulin resistance in prostate cancer: the role of obesity, nutrition and exercise[J]. Obes Rev, 2018, 19(7): 1008-1016.
[21]Han W, Gao S, Barrett D, et al. Reactivation of androgen receptor-regulated lipid biosynthesis drives the progression of castration-resistant prostate cancer[J]. Oncogene, 2018, 37(6): 710-721.
[22]Shah S, Carriveau WJ, Li J, et al. Targeting ACLY sensitizes castration-resistant prostate cancer cells to AR antagonism by impinging on an ACLY-AMPK-AR feedback mechanism[J]. Oncotarget, 2016, 7(28): 43713-43730.
[23]孔海瑞, 耿申, 杨杰, 等. ATP柠檬酸裂解酶表达下调对前列腺癌细胞生长及凋亡影响的研究[J]. 医学研究生学报, 2017, 30(1): 26-30.
[24]Rossi S, Graner E, Febbo P, et al. Fatty Acid Synthase Expression Defines Distinct Molecular Signatures in Prostate Cancer[J]. Molecular Cancer Research, 2003, 1(10): 707-715.
[25]Nomura DK, Lombardi DP, Chang JW, et al. Monoacylglycerol lipase exerts dual control over endocannabinoid and fatty acid pathways to support prostate cancer[J]. Chem Biol, 2011, 18(7): 846-856.
[26]Zadra G, Ribeiro CF, Chetta P, et al. Inhibition of de novo lipogenesis targets androgen receptor signaling in castration-resistant prostate cancer[J]. Proc Natl Acad Sci USA, 2019, 116(2): 631-640.
[27]Li X, Chen YT, Hu P, et al. Fatostatin displays high antitumor activity in prostate cancer by blocking SREBP-regulated metabolic pathways and androgen receptor signaling[J]. Mol Cancer Ther, 2014, 13(4): 855-866.
[28]Wu X, Daniels G, Lee P, et al. Lipid metabolism in prostate cancer[J]. Am J Clin Exp Urol, 2014, 2(2): 111-120.
[29]Wu X, Dong Z, Wang CJ, et al. FASN regulates cellular response to genotoxic treatments by increasing PARP-1 expression and DNA repair activity via NF-kappaB and SP1[J]. Proc Natl Acad Sci USA, 2016, 113(45): E6965-E6973.
[30]Long Z, Li Y, Gan Y, et al. Roles of the HOXA10 gene during castrate-resistant prostate cancer progression[J]. Endocr Relat Cancer, 2019, 26(3): 279-292.
[31]Carbonetti G, Converso C, Clement T, et al. Docetaxel/cabazitaxel and fatty acid binding protein 5 inhibitors produce synergistic inhibition of prostate cancer growth[J]. Prostate, 2020, 80(1): 88-98.
[32]Lin LC, Gao AC, Lai CH, et al. Induction of neuroendocrine differentiation in castration resistant prostate cancer cells by adipocyte differentiation-related protein (ADRP) delivered by exosomes[J]. Cancer Lett, 2017, 391(74-82).
[33]Al-Jameel W, Gou X, Jin X,et al. Inactivated FABP5 suppresses malignant progression of prostate cancer cells by inhibiting the activation of nuclear fatty acid receptor PPARγ[J]. Genes Cancer, 2019, 10(3-4): 80-96.
[34]Kong Y, Cheng L, Mao F, et al. Inhibition of cholesterol biosynthesis overcomes enzalutamide resistance in castration-resistant prostate cancer (CRPC)[J]. J Biol Chem, 2018, 293(37): 14328-14341.
[35]Xu Z, Ma T, Zhou J, et al. Nuclear receptor ERRalpha contributes to castration-resistant growth of prostate cancer via its regulation of intratumoral androgen biosynthesis[J]. Theranostics, 2020, 10(9): 4201-4216.
[36]Gao Y, Li L, Li T, et al. Simvastatin delays castrationresistant prostate cancer metastasis and androgen receptor antagonist resistance by regulating the expression of caveolin1[J]. Int J Oncol, 2019, 54(6): 2054-2068.
[37]Stopsack KH, Gerke TA, Sinnott JA, et al. Cholesterol Metabolism and Prostate Cancer Lethality[J]. Cancer Res, 2016, 76(16): 4785-4790.
[38]Pelton K, Freeman MR, Solomon KR. Cholesterol and prostate cancer[J]. Curr Opin Pharmacol, 2012, 12(6): 751-759.
[39]Zhuang L, Lin J, Lu ML, et al. Cholesterol-rich lipid rafts mediate akt-regulated survival in prostate cancer cells[J]. Cancer research, 2002, 62(8): 2227-2231.
[40]Oh HY, Lee EJ, Yoon S, et al. Cholesterol level of lipid raft microdomains regulates apoptotic cell death in prostate cancer cells through EGFR-mediated Akt and ERK signal transduction[J]. Prostate, 2007, 67(10): 1061-1069.
[41]Priolo C, Pyne S, Rose J, et al. AKT1 and MYC induce distinctive metabolic fingerprints in human prostate cancer[J]. Cancer Res, 2014, 74(24): 7198-7204.
[42]Dong P, Flores J, Pelton K, et al. Prohibitin is a cholesterol-sensitive regulator of cell cycle transit[J]. J Cell Biochem, 2010, 111(5): 1367-1374.
[43]Migita T, Takayama KI, Urano T, et al. ACSL3 promotes intratumoral steroidogenesis in prostate cancer cells[J]. Cancer Sci, 2017, 108(10): 2011-2021.
[44]Roslan Z, Muhamad M, Selvaratnam L, et al. The Roles of Low-Density Lipoprotein Receptor-Related Proteins 5, 6, and 8 in Cancer: A Review[J]. J Oncol, 2019, 2019:4536302.
[45]Thomas WF, Maren SS, Su LJ, et al. Lipid catabolism inhibition sensitizes prostate cancer cells to antiandrogen blockade[J]. Oncotarget, 2017, 8(34): 56051-56065.
[46]Nowak DG, Cho H, Herzka T, et al. MYC Drives Pten/Trp53-Deficient Proliferation and Metastasis due to IL6 Secretion and AKT Suppression via PHLPP2[J]. Cancer Discov, 2015, 5(6): 636-651.
[47]Ettinger SL, Sobel R, Whitmore TG, et al. Dysregulation of Sterol Response Element-Binding Proteins and Downstream Effectors in Prostate Cancer during Progression to Androgen Independence[J]. Cancer Res, 2004, 64(6): 2212-2221.
[48]Sharma B, Kanwar SS. Phosphatidylserine: A cancer cell targeting biomarker[J]. Semin Cancer Biol, 2018, 52(Pt 1): 17-25.
[49]Randall EC, Zadra G, Chetta P, et al. Molecular Characterization of Prostate Cancer with Associated Gleason Score Using Mass Spectrometry Imaging[J]. Mol Cancer Res, 2019, 17(5): 1155-1165.
[50]王娇娇, 闫克敏, 肖海娟. 膜联蛋白A3在恶性肿瘤中的研究进展[J]. 医学研究生学报, 2019, 32(6): 662-667.
[51]Lin HM, Mahon KL, Weir JM, et al. A distinct plasma lipid signature associated with poor prognosis in castration-resistant prostate cancer[J]. Int J Cancer, 2017, 141(10): 2112-2120.
[52]Blomme A, Ford CA, Mui E, et al. 2,4-dienoyl-CoA reductase regulates lipid homeostasis in treatment-resistant prostate cancer[J]. Nat Commun, 2020, 11(1): 2508.

相似文献/References:

[1]翟金盛,王晓玲,王 颖.前列腺癌患者社会支持和抑郁状况调查及相关性分析[J].医学研究与战创伤救治(原医学研究生学报),2015,17(01):67.[doi:10.3969/j.issn.1672-271X.2015.01.022]
 ZHAI Jin-sheng,WANG Xiao-ling,WANG Ying..Social support, depression and their correlation in the prostate cancer patients[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2015,17(02):67.[doi:10.3969/j.issn.1672-271X.2015.01.022]
[2]段 松.前列腺癌组织中Skp2的表达及其与前列腺癌术后复发的关系[J].医学研究与战创伤救治(原医学研究生学报),2016,18(01):47.[doi:10.3969/j.issn.1672-271X.2016.01.014]
 DUAN Song..The expression of Skp2 in prostate cancer and its relationship with postoperative recurrence[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2016,18(02):47.[doi:10.3969/j.issn.1672-271X.2016.01.014]
[3]罗伟,吴静,方克伟.C-反应蛋白与前列腺癌相关性的研究进展[J].医学研究与战创伤救治(原医学研究生学报),2020,22(5):516.[doi:10.3969/j.issn.1672-271X.2020.05.014]
 LUO Wei,WU Jing,FANG Ke-wei.Research progress on the relationship between C-reactive protein and prostate cancer[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2020,22(02):516.[doi:10.3969/j.issn.1672-271X.2020.05.014]
[4]黄明清,翁雨亭,方克伟.雌激素受体的生物学功能及其在骨骼肌发育和前列腺癌中作用的研究进展[J].医学研究与战创伤救治(原医学研究生学报),2022,24(2):172.[doi:10.3969/j.issn.1672-271X.2022.02.013]
 HUANG Ming-qing,WENG Yu-ting,FANG Ke-wei.Advances in the study of the biological function of estrogen receptor and its role in skeletal muscle development and prostate cancer[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2022,24(02):172.[doi:10.3969/j.issn.1672-271X.2022.02.013]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81570687,81873627)
更新日期/Last Update: 2021-03-22