|本期目录/Table of Contents|

[1]张天雅,张志红,田佳鑫,等.内质网应激与氧化应激在糖尿病周围神经病变中研究进展[J].医学研究与战创伤救治(原医学研究生学报),2022,24(3):292-296.[doi:10.3969/j.issn.1672-271X.2022.03.015]
 ZHANG Tian-ya,ZHANG Zhi-hong,TIAN Jia-xin,et al.Research progress of endoplasmic reticulum stress and oxidative stress in diabetic prepheral neuropathy[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2022,24(3):292-296.[doi:10.3969/j.issn.1672-271X.2022.03.015]
点击复制

内质网应激与氧化应激在糖尿病周围神经病变中研究进展()

《医学研究与战创伤救治》(原医学研究生学报)[ISSN:1672-271X/CN:32-1713/R]

卷:
第24卷
期数:
2022年3期
页码:
292-296
栏目:
综述
出版日期:
2022-06-30

文章信息/Info

Title:
Research progress of endoplasmic reticulum stress and oxidative stress in diabetic prepheral neuropathy
作者:
张天雅张志红田佳鑫贲莹
作者单位:050000石家庄,河北中医学院研究生学院(张天雅、田佳鑫);050000石家庄,河北省肝肾病证研究重点实验室(张志红、贲莹)
Author(s):
ZHANG Tian-ya ZHANG Zhi-hong TIAN Jia-xin BEN Ying
(1.Graduate School of Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei, China;2. Hebei Key Laboratory of Integrative Medicine on Liver-Kidney Patterns, Shijiazhuang 050000, Hebei, China)
关键词:
内质网应激氧化应激糖尿病周围神经病变
Keywords:
endoplasmic reticulum stressoxidative stressdiabetic prepheral neuropathy
分类号:
R587
DOI:
10.3969/j.issn.1672-271X.2022.03.015
文献标志码:
A
摘要:
糖尿病周围神经病变(DPN)是糖尿病最常见的并发症之一,由多种作用机制共同引发。已知内质网应激和氧化应激是DPN的重要机制,在致病过程中具有协同作用,在一定程度上相互影响,但具体的作用机制仍有待研究。文章对内质网应激和氧化应激在DPN中的研究现状及两者共同的致病机制的研究进展进行综述。
Abstract:
Diabetic prepheral neuropathy(DPN) is one of the common complication which is resulting from multiple mechanism. Both Endoplasmic reticulum stress(ERS) and oxidative stress(OS) having a far-reaching impact on DPN.They have a synergistic effect in the pathogenesis of disease and impact each other to some extent .But the precise mechanism remains to be studied.This summary reviewed the research progress of ERS and OS in DPN and the common pathogenesis will provide a new way for clinical prevention and treatment of DPN.

参考文献/References:

[1]Zenker J, Ziegler D, Chrast R. Novel pathogenic pathways in diabetic neuropathy[J]. Trends Neurosci, 2013, 36(8): 439-449.
[2]Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy[J]. Nat Rev Dis Primers, 2019, 5(1): 41-59.
[3]Chandrasekaran K, Anjaneyulu M, Choi J, et al. Role of mitochondria in diabetic peripheral neuropathy: Influencing the NAD-dependent SIRT1-PGC-1α-TFAM pathway[J]. Int Rev Neurobiol, 2019, 145: 177-209.
[4]Yagihashi S, Yamagishi SI, Wada Ri R, et al. Neuropathy in diabetic mice overexpressing human aldose reductase and effects of aldose reductase inhibitor[J]. Brain, 2001, 124(Pt 12): 2448-2458.
[5]Dewanjee S, Das S, Das A, et al. Molecular mechanism of diabetic neuropathy and its pharmacotherapeutic targets[J]. Eur J Pharmacol, 2018, 833: 472-523.
[6]Chang YS, Kan HW, Hsieh YL. Activating transcription factor 3 modulates protein kinase C epsilon activation in diabetic peripheral neuropathy[J]. J Pain Res, 2019, 12: 317-326.
[7]Verge VMK, Andreassen CS, Arnason TG, et al. Mechanisms of disease: role of neurotrophins in diabetes and diabetic neuropathy[J]. Handb Clin Neurol, 2014, 126: 443-460.
[8]李海斌, 杨生健, 蔡春茂, 等. 甲钴胺和银杏叶联合治疗老年糖尿病周围神经病变22例[J]. 东南国防医药, 2011, 13(4): 362.
[9]Pang L, Lian X, Liu HQ, et al. Understanding Diabetic Neuropathy: Focus on Oxidative Stress[J]. Oxid Med Cell Longev, 2020, 2020:9524635.
[10]Liu YP, Shao SJ, Guo HD. Schwann cells apoptosis is induced by high glucose in diabetic peripheral neuropathy[J]. Life Sci, 2020, 248: 117459.
[11]Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling[J]. Cell Mol Life Sci, 2016, 73(1): 79-94.
[12]Márton M, Kurucz A, Lizák B, et al. A Systems Biological View of Life-and-Death Decision with Respect to Endoplasmic Reticulum Stress-The Role of PERK Pathway[J]. Int J Mol Sci, 2017, 18(1): 58.
[13]Deegan S, Koryga I, Glynn S, et al. A close connection between the PERK and IRE arms of the UPR and the transcriptional regulation of autophagy[J]. Biochem Biophys Res Commun, 2015, 456(1): 305-311.
[14]O′Brien P, Hinder L, Sakowski S, et al. ER stress in diabetic peripheral neuropathy: A new therapeutic target[J]. Antioxid Redox Signal, 2014, 21(4): 621-633.
[15]Lupachyk S, Watcho P, Stavniichuk R, et al. Endoplasmic reticulum stress plays a key role in the pathogenesis of diabetic peripheral neuropathy[J]. Diabetes, 2013, 62(3): 944-952.
[16]Ariyasu D, Yoshida H, Hasegawa Y. Endoplasmic Reticulum (ER) Stress and Endocrine Disorders[J]. Int J Mol Sci, 2017, 18(2): 382.
[17]Gundu C, Arruri V, Sherkhane B, et al. Indole-3-propionic acid attenuates high glucose induced ER stress response and augments mitochondrial function by modulating PERK-IRE1-ATF4-CHOP signalling in experimental diabetic neuropathy[J]. Arch Physiol Biochem, 2022, 1-14.
[18]El-Horany H, Watany M, Hagag R, et al. Expression of LRP1 and CHOP genes associated with peripheral neuropathy in type 2 diabetes mellitus: Correlations with nerve conduction studies[J]. Gene, 2019, 702: 114-122.
[19]Pan H, Huang H, Zhang L, et al. "Adjusting internal organs and dredging channel" electroacupuncture treatment prevents the development of diabetic peripheral neuropathy by downregulating glucose-related protein 78 (GRP78) and caspase-12 in streptozotocin-diabetic rats[J]. J Diabetes, 2019, 11(12): 928-937.
[20]Song B, Scheuner D, Ron D, et al. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes[J]. J Clin Invest, 2008, 118(10): 3378-3389.
[21]Yang X, Yao W, Liu H, et al. Tangluoning, a traditional Chinese medicine, attenuates in vivo and in vitro diabetic peripheral neuropathy through modulation of PERK/Nrf2 pathway[J]. Sci Rep, 2017, 7(1): 1014-1025.
[22]Clark A, Urano F. Endoplasmic reticulum stress in beta cells and autoimmune diabetes[J]. Curr Opin Immunol, 2016, 43: 60-66.
[23]Yao W, Yang X, Zhu J, et al. IRE1α siRNA relieves endoplasmic reticulum stress-induced apoptosis and alleviates diabetic peripheral neuropathy in vivo and in vitro[J]. Sci Rep, 2018, 8(1): 2579-2591.
[24]Madhusudhan T, Wang H, Dong W, et al. Defective podocyte insulin signalling through p85-XBP1 promotes ATF6-dependent maladaptive ER-stress response in diabetic nephropathy[J]. Nat Commun, 2015, 6: 6496-6511.
[25]Tabassum R, Jeong NY, Jung J. Protective effect of hydrogen sulfide on oxidative stress-induced neurodegenerative diseases[J]. Neural Regen Res, 2020, 15(2): 232-241.
[26]Sadeghiyan Galeshkalami N, Abdollahi M, Najafi R, et al. Alpha-lipoic acid and coenzyme Q10 combination ameliorates experimental diabetic neuropathy by modulating oxidative stress and apoptosis[J]. Life Sci, 2019, 216: 101-110.
[27]熊燕. α-硫辛酸联合依帕司他治疗糖尿病周围神经病变临床疗效的Meta分析[J]. 东南国防医药, 2017, 19(1): 58-61.
[28]Figueroa-Romero C, Sadidi M, Feldman E. Mechanisms of disease: the oxidative stress theory of diabetic neuropathy[J]. Rev Endocr Metab Disord, 2008, 9(4): 301-314.
[29]Li Q, Wang Z, Zhou W, et al. Epalrestat protects against diabetic peripheral neuropathy by alleviating oxidative stress and inhibiting polyol pathway[J]. Neural Regen Res, 2016, 11(2): 345-351.
[30]Soltesova Prnova M, Ballekova J, Gajdosikova A, et al. A novel carboxymethylated mercaptotriazinoindole inhibitor of aldose reductase interferes with the polyol pathway in streptozotocin-induced diabetic rats[J]. Physiol Res, 2015, 64(4): 587-591.
[31]Oates PJ. Aldose Reductase, Still a Compelling Target for Diabetic Neuropathy[J]. Curr Drug Targets, 2008, 9(1): 14-36.
[32]Geicu OI, Stanca L, Voicu SN, et al. Dietary AGEs involvement in colonic inflammation and cancer: insights from an in vitro enterocyte model[J]. Sci Rep, 2020, 10(1): 1-14.
[33]Wu TT, Chen YY, Chang HY, et al. AKR1B1-Induced Epithelial-Mesenchymal Transition Mediated by RAGE-Oxidative Stress in Diabetic Cataract Lens[J]. Antioxidants, 2020, 9(4): 273.
[34]Shakeel M. Recent advances in understanding the role of oxidative stress in diabetic neuropathy[J]. Diabetes & metabolic syndrome, 2015, 9(4): 373-378.
[35]Babizhayev MA, Strokov IA, Nosikov VV, et al. The Role of Oxidative Stress in Diabetic Neuropathy: Generation of Free Radical Species in the Glycation Reaction and Gene Polymorphisms Encoding Antioxidant Enzymes to Genetic Susceptibility to Diabetic Neuropathy in Population of Type I Diabetic Patients[J]. Cell Biochem Biophys, 2015, 71(3): 1425-1443.
[36]Li X, Zhao Z, Kuang P, et al. Regulation of lipid metabolism in diabetic rats by Arctium lappa L. polysaccharide through the PKC/NF-κB pathway[J]. Int J Biol Macromol, 2019, 136: 115-122.
[37]Kishore L, Kaur N, Singh R. Effect of Kaempferol isolated from seeds of Eruca sativa on changes of pain sensitivity in Streptozotocin-induced diabetic neuropathy[J]. Inflammopharmacology, 2017, 26(4): 1-11.
[38]Koroglu P, Bulan OK, Ozakpinar OB, et al. The effect of oxytocin treatment on the adult liver of streptozotocin (STZ) - Induced diabetic rats[J]. Fresenius Environ Bull, 2017, 26(8): 5013-5020.
[39]Simmen T, Lynes EM, Gesson K, et al. Oxidative protein folding in the endoplasmic reticulum: tight links to the mitochondria-associated membrane (MAM)[J]. Biochim Biophys Acta, 2010, 1798(8): 1465-1473.
[40]Maamoun H, Benameur T, Pintus G, et al. Crosstalk Between Oxidative Stress and Endoplasmic Reticulum (ER) Stress in Endothelial Dysfunction and Aberrant Angiogenesis Associated With Diabetes: A Focus on the Protective Roles of Heme Oxygenase (HO)-1[J]. Front Physiol, 2019, 10: 70.
[41]Lewis SC, Uchiyama LF, Nunnari J. ER-mitochondria contacts couple mtDNA synthesis with mitochondrial division in human cells[J]. Science, 2016, 353(6296): aaf5549.
[42]Yang X, Yao W, Liu H, et al. Tangluoning, a traditional Chinese medicine, attenuates in vivo and in vitro diabetic peripheral neuropathy through modulation of PERK/Nrf2 pathway[J]. Sci Rep, 2017, 7(1): 1014.
[43]Jin JK, Blackwood EA, Azizi KM, et al. ATF6 Decreases Myocardial Ischemia/Reperfusion Damage and Links ER Stress and Oxidative Stress Signaling Pathways in the Heart[J]. Circ Res, 2016, 120(5): 862-875.

相似文献/References:

[1]吴 升,沈亚伟,郝 建,等.猪胰蛋白酶致大鼠COPD氧化应激与动脉血气间的相关性研究[J].医学研究与战创伤救治(原医学研究生学报),2012,14(03):219.
 WU Sheng,SHEN Ya-wei,HAO Jian,et al.The research of relationship between oxidatie stress and the changes of arterial blood gas in the rat with COPD induced by pig trypsin[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2012,14(3):219.
[2]刘康生,顾平清,钟天鹰 综述,等.铅镉重金属与生殖内质网应激研究进展[J].医学研究与战创伤救治(原医学研究生学报),2015,17(04):418.[doi:10.3969/j.issn.1672-271X.2015.04.026]
[3]陈凯凯,郭和清,穆大为,等.模拟加速度对肾草酸钙结石模型大鼠氧化应激的影响[J].医学研究与战创伤救治(原医学研究生学报),2016,18(01):10.[doi:10.3969/j.issn.1672-271X.2016.01.003]
 CHEN Kai-kai,GUO He-qing,MU Da-wei,et al.Effect of acceleration on oxidative stress of renal calcium oxalate rat models[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2016,18(3):10.[doi:10.3969/j.issn.1672-271X.2016.01.003]
[4]原芳,李向辉,张爱枝.小剂量红霉素长期口服对支气管扩张症患者感染稳定期链球菌耐药性和氧化应激蛋白的影响[J].医学研究与战创伤救治(原医学研究生学报),2016,18(05):511.[doi:10.3969/j.issn.1672-271X.2016.05.019]
 YUAN Fang,LI Xiang-hui,ZHANG Ai-zhi.The effect of long-term low-dose oral erythromycin on streptococcusresistance and oxidative stress proteins for patients with stable bronchiectasis[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2016,18(3):511.[doi:10.3969/j.issn.1672-271X.2016.05.019]
[5]陈立慧,李璐璐.茶多酚对H9C2大鼠心肌细胞缺氧/复氧损伤的保护作用机制[J].医学研究与战创伤救治(原医学研究生学报),2020,22(3):228.[doi:10.3969/j.issn.1672-271X.2020.03.002]
 CHEN Li-hui,LI Lu-lu.Study on the protective effect and mechanism of tea polyphenols on H9C2 rat cardiomyocytes injury induced by hypoxia/reoxygenation[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2020,22(3):228.[doi:10.3969/j.issn.1672-271X.2020.03.002]
[6]王永园,吕磊,李瑶,等.新兵首次长跑训练前后心电图以及氧化应激指标水平对比分析[J].医学研究与战创伤救治(原医学研究生学报),2021,23(03):240.[doi:10.3969/j.issn.1672-271X.2021.03.004]
 WANG Yong-yuan,L Lei,LI Yao,et al.Effect of first-time high-intensity exercise on ECG changes and oxidative stress[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2021,23(3):240.[doi:10.3969/j.issn.1672-271X.2021.03.004]
[7]朱雷,薛春燕.Keap1-Nrf2信号通路在角膜急性紫外线损伤防治中的研究进展[J].医学研究与战创伤救治(原医学研究生学报),2021,23(6):637.[doi:10.3969/j.issn.1672-271X.2021.06.017]
 ZHU Lei,XUE Chun-yan.Research progress of Keap1-Nrf2 signaling pathway in the prevention and treatment of acute UV damage in cornea[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2021,23(3):637.[doi:10.3969/j.issn.1672-271X.2021.06.017]

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81803922)
更新日期/Last Update: 2022-06-21