|本期目录/Table of Contents|

[1]程毅,涂强,夏虹.军事训练中韧带损伤型上颈椎失稳的三维动力模型建立及有限元分析[J].医学研究与战创伤救治(原医学研究生学报),2022,24(5):449-453.[doi:10.3969/j.issn.1672-271X.2022.05.001]
 CHENG Yi,TU Qiang,XIA Hong.Establishment of three-dimensional dynamic model and finite element analysis of ligament injury type upper cervical instability in military training[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2022,24(5):449-453.[doi:10.3969/j.issn.1672-271X.2022.05.001]
点击复制

军事训练中韧带损伤型上颈椎失稳的三维动力模型建立及有限元分析()

《医学研究与战创伤救治》(原医学研究生学报)[ISSN:1672-271X/CN:32-1713/R]

卷:
第24卷
期数:
2022年5期
页码:
449-453
栏目:
出版日期:
2022-11-02

文章信息/Info

Title:
Establishment of three-dimensional dynamic model and finite element analysis of ligament injury type upper cervical instability in military training
作者:
程毅涂强夏虹
作者单位:510080广州,南部战区总医院骨科(程毅、涂强、夏虹)
Author(s):
CHENG YiTU QiangXIA Hong
(Department of Orthopedics,General Hospital of Southern Theater Command, PLA,Guangzhou 510080,Guangdong,China)
关键词:
军事训练韧带损伤上颈椎失稳有限元分析
Keywords:
Military training ligament injury upper cervical instability finite element analysis
分类号:
R648
DOI:
10.3969/j.issn.1672-271X.2022.05.001
文献标志码:
A
摘要:
目的通过有限元分析技术建立韧带损伤型上颈椎的三维动力学模型以明确枕下各韧带的运动学特征,为军事训练中韧带损伤型上颈椎失稳临床新诊断标准的建立提供理论基础。方法根据1名27岁男性志愿者上颈椎CT薄层扫描图像文件导入Mimics10.0三维重建软件重建三维几何模型。使用Freefrom 5.0结构优化软件对几何模型进行处理后录入Ansys 10.0有限元软件, 重建出上颈椎的骨性有限元模型。根据相关数据资料构建各韧带结构。通过三维动力建模对枕下各韧带的生物力学特性进行评估。结果 ①屈曲伸展时,寰枢前韧带、寰枢后韧带、枕寰前韧带、枕寰后韧带和尖韧带的长度变化>25%,而其他韧带的长度变化较小(P<0.05);在力矩臂方面,寰枢后韧带和枕寰后韧带等韧带的变化幅度较大,枕寰后韧带的力矩臂变化较大(P<0.05)。②轴向旋转时,寰枢前韧带、寰枢后韧带和翼状韧带的轴向旋转相对中立位长度变化最大;与其他韧带相比,寰枢后韧带表现出更大的力矩臂幅度和变化量,在两个运动方向上都有增加的趋势。相比之下,寰枢前韧带组仅在同侧最大旋转时力矩臂显著减少(P<0.05)。横韧带最大同侧轴向旋转时力矩臂显著增加,最大对侧旋转时力矩臂显著减小(P<0.05)。结论通过量化长度和力矩臂大小,提供了上颈椎韧带在屈伸和轴向旋转时的相关生物力学特征,利于提高韧带损伤型上颈椎失稳的认知。
Abstract:
ObjectiveTo establish a three-dimensional dynamic model of the upper cervical spine with ligament injury by finite element analysis technique to clarify the kinematic characteristics of each suboccipital ligament and provide a theoretical basis for the establishment of new clinical diagnostic criteria.MethodsThe biomechanical properties of suboccipital ligaments were evaluated by three-dimensional dynamic modeling.Results①The length of atlanto-pivotal anterior ligament, atlanto-pivotal posterior ligament, occipitoatlantal anterior ligament, occipitoatlantal posterior ligament and apical ligament changed by >25%, while the length of other ligaments changed little(P<0.05); in terms of moment arm, the change range of ligaments such as atlanto-pivotal posterior ligament and occipitoatlantal posterior ligament was greater, and the moment arm of occipitoatlantal posterior ligament changed greatly(P<0.05). ②the axial rotation of the atlanto-pivotal anterior ligament, atlanto-pivotal posterior ligament, and alar ligament changed the most from the neutral length; the atlanto-pivotal posterior ligament showed a greater moment arm amplitude and amount of change compared with other ligaments, with a tendency to increase in both directions of motion. In contrast, the atlanto-pivotal anterior ligament group had a significantly reduced moment arm only at maximal rotation on the same side(P<0.05). The moment arm increased significantly during maximal coaxial rotation of the transverse ligament and decreased significantly during maximal rotation(P<0.05).ConclusionBy quantifying the length and moment arm, the biomechanical characteristics of upper cervical ligaments in flexion, extension and axial rotation are provided, which is helpful to improve the cognition of upper cervical instability caused by ligament injury.

参考文献/References:

[1]Ryba L,Cienciala J,Chaloupka R, et al.Injury of upper cervical spine[J].Soud Lek,2016,61(2):20-25.
[2]Ifthekar S,Ahuja K,Mittal S,et al.Management of Neglected Upper Cervical Spine Injuries.[J].Indian J Orthop,2021,55(3):673-679.
[3]吴琪,张穹,冯亮友,等.用于全髋关节置换术后康复与助残辅助假肢的设计[J].东南国防医药,2019,21(5):491-495.
[4]Lagravère M. Finite element analysis: Is it justifiable?[J]Am J Orthod Dentofacial Orthop,2021,159(3):255-256.
[5]李冰言,张吉超,张震,等.基于有限元分析的重度膝骨关节炎膝关节生物力学研究[J].医学研究生学报,2021,34(10):1052-1056.
[6]Dyas AR, Niemeier TE, Mcgwin G, et al. Ability of magnetic resonance imaging to accurately determine alar ligament integrity in patients with atlanto-occipital injuries[J]. J Craniovertebr Junction Spine, 2018, 9(4): 241-242.
[7]Fiester P, Soule E, Natter P, et al. Tectorial membrane injury in adult and pediatric trauma patients: a retrospective review and proposed classification scheme[J]. Emerg Radiol, 2019, 26(6): 615-622.
[8]Li-Jun L, Ying-Chao H, Ming-Jie Y, et al. Biomechanical analysis of the longitudinal ligament of upper cervical spine in maintaining atlantoaxial stability[J]. Spin Cord, 2014, 52(5): 342-347.
[9]Creighton DS, Marsh D, Gruca M, et al. The application of a pre-positioned upper cervical traction mobilization to patients with painful active cervical rotation impairment: A case series[J]. J Back Musculoskelet Rehabil, 2017,30(5):1053-1059.
[10]Gierczycka D, Rycman A, Cronin D. Importance of passive muscle, skin, and adipose tissue mechanical properties on head and neck response in rear impacts assessed with a finite element model[J]. Traffic Inj Prev, 2021, 22(5): 407-412.
[11]Cho J, Lee E, Lee S. Upper cervical and upper thoracic spine mobilization versus deep cervical flexors exercise in individuals with forward head posture: A randomized clinical trial investigating their effectiveness[J]. J Back Musculoskelet Rehabil, 2019, 32(4): 595-602.
[12]Bodon G, Kiraly K, Tunyogi-Csapo M, et al. Introducing the craniocervical Y-ligament[J]. Surg Radiol Anat, 2019, 41(2): 197-202.
[13]Cai XY, Yuchi CX, Du CF, et al. The effect of follower load on the range of motion, facet joint force, and intradiscal pressure of the cervical spine: a finite element study[J]. Med Biol Eng Comput, 2020, 58(8): 1695-1705.
[14]Satpute K, Nalband S, Hall T. The C0-C2 axial rotation test: normal values, intra-and inter-rater reliability and correlation with the flexion rotation test in normal subjects[J]. J Man Manip Ther, 2019, 27(2): 92-98.
[15]Swanson BT, Craven AB, Jordan J, et al. Comparison of range of motion during the cervical flexion rotation versus the side-bending rotation test in individuals with and without hyperlaxity[J]. J Man Manip Ther, 2019, 27(1): 24-32.

相似文献/References:

[1]沈玉美,张秀梅,戴榕娟,等.新兵跑步考核前后目标追踪能力的变化[J].医学研究与战创伤救治(原医学研究生学报),2011,13(04):358.
[2]陈文辉,李晓鹏,顾晓芳,等.海军飞行学员训练前后皮肤病调查[J].医学研究与战创伤救治(原医学研究生学报),2011,13(05):421.
[3]张阳根,邓小军,陈彬,等.常规军事训练对新兵血清生化指标的影响[J].医学研究与战创伤救治(原医学研究生学报),2010,12(05):388.
 ZHANG Yang-gen,DENG Xiao-jun,CHEN Bin,et al.Impact of regular military training on the blood biochemistry indexes of PLA male recruits[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2010,12(5):388.
[4]尹雪军,张杰华,徐才国,等.军事训练致隐匿性膝关节损伤的低场MRI诊断[J].医学研究与战创伤救治(原医学研究生学报),2010,12(03):223.
 YIN Xue-jun,ZHANG Jie-hua,XU Cai-guo,et al.Low field MRI diagnosis of occult knee joints injury in military training[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2010,12(5):223.
[5]汪 勇,赵武伟,何晓军,等.5公里武装越野训练对新学员肌疲劳及血清酶的影响[J].医学研究与战创伤救治(原医学研究生学报),2010,12(03):255.
[6]胡小南,王与荣,罗永合.非战争军事行动卫勤保障中航空医疗后送的实践与思考[J].医学研究与战创伤救治(原医学研究生学报),2009,11(01):87.
[7]于晓华,姥义,桑玉顺,等.新兵集训胫骨骨膜动态变化的高频超声测量[J].医学研究与战创伤救治(原医学研究生学报),2009,11(05):385.
 YU Xiao-hua,MU Yi,SANG Yu-shun,et al.Changes of the tibia periosteal thickness detected with high frequency ultrasonography before and after military training[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2009,11(5):385.
[8]慈书平,茅建华,赵宁志,等.军队人员睡眠异常对训练影响研究的探讨[J].医学研究与战创伤救治(原医学研究生学报),2009,11(05):473.
[9]陈功荣,张美林.军事训练致运动性晕厥的救治体会[J].医学研究与战创伤救治(原医学研究生学报),2008,10(03):220.
[10]姥义,桑玉顺,于晓华,等.新兵军事训练前后心脏的超声心动图研究[J].医学研究与战创伤救治(原医学研究生学报),2008,10(04):254.
 MU Yi,SANG Yu-shun,YU Xiao-hua,et al.Study on the changes of echocardiography before and after military training[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2008,10(5):254.

备注/Memo

备注/Memo:
基金项目:军队后勤科研项目(CLB20J033) ;广州市科技计划项目(201904010349)
更新日期/Last Update: 2022-11-16