|本期目录/Table of Contents|

[1]曹伟云,刘海芬,谭俊,等.Brock模型与肺结节影像分级报告系统对亚实性肺结节良恶性鉴别能力的比较[J].医学研究与战创伤救治(原医学研究生学报),2022,24(6):573-577.[doi:10.3969/j.issn.1672-271X.2022.06.003]
 CAO Wei-yun,LIU Hai-fen,TAN Jun,et al.Comparison of the Brock model and LU-RADS in differentiating malignant subsolid pulmonary nodules from benign nodules[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2022,24(6):573-577.[doi:10.3969/j.issn.1672-271X.2022.06.003]
点击复制

Brock模型与肺结节影像分级报告系统对亚实性肺结节良恶性鉴别能力的比较()

《医学研究与战创伤救治》(原医学研究生学报)[ISSN:1672-271X/CN:32-1713/R]

卷:
第24卷
期数:
2022年6期
页码:
573-577
栏目:
临床研究
出版日期:
2023-01-18

文章信息/Info

Title:
Comparison of the Brock model and LU-RADS in differentiating malignant subsolid pulmonary nodules from benign nodules
作者:
曹伟云刘海芬谭俊伍世葵刘浩雷
作者单位:412000株洲,湖南中医药高等专科学校附属第一医院呼吸与危重症医学科(曹伟云、伍世葵、刘浩雷),放射科(刘海芬、谭俊)
Author(s):
CAO Wei-yun1LIU Hai-fen2TAN Jun2WU Shi-kui1LIU Hao-lei1
(1.Department of Respiratory and Critical Care Medicine,2.Department of Radiology,The First Affilated Hospital of Hunan Traditional Chinese Medicine College,Zhuzhou 412000,Hunan,China)
关键词:
亚实性肺结节预测模型LU-RADS恶性结节
Keywords:
subsolid pulmonary nodules predictive model LU-RADS malignant nodule
分类号:
R734.2
DOI:
10.3969/j.issn.1672-271X.2022.06.003
文献标志码:
A
摘要:
目的比较Brock模型和肺结节影像分级报告系统(LU-RADS)在亚实性肺结节(SPN)良恶性鉴别能力。方法回顾性分析2018年1月至2021年12月期间在湖南中医药高等专科学校附属第一医院行手术切除且病理证实的133例SPN患者临床资料,根据病理结果分为良性SPN组41例和恶性SPN组92例,并对其临床资料进行统计分析,通过Brock模型预测公式计算SPN的恶性概率,由2位放射科医师分别独立阅片并确定SPN的LU-RADS分类。分别绘制Brock模型和LU-RADS的ROC,得到AUC并进行比较。结果恶性SPN组患者的年龄、最大直径明显大于良性SPN组患者(P<0.01),恶性SPN组中的毛刺征(P<0.01)、分叶征(P=0.02)和胸膜牵拉征(P<0.01)明显多于良性SPN组,且恶性SPN多以混合性磨玻璃结节(mGGN)为主(77.17%)。恶性SPN组的LU-RADS 4A和4B类明显多于良性SPN组(56 vs 4,P<0.05),恶性SPN组的Brock模型的恶性概率明显大于良性SPN组(0.21 vs 0.06,P<0.05)。Brock模型与LU-RADS具有较好的相关性(r=0.75,P<0.01),两者鉴别SPN良恶性的能力均较高且差异无统计学意义(AUC: 0.83 vs 0.78,P=0.16),亚组分析显示Brock模型对混合性磨玻璃结节的良恶性鉴别能力明显高于LU-RADS(AUC: 0.92 vs 0.85,P=0.03),但两者对纯磨玻璃结节的良恶性鉴别能力均较差(AUC: 0.59 vs 0.55,P=0.66)。结论Brock模型对混合性磨玻璃结节良恶性鉴别能力优于LU-RADS。
Abstract:
ObjectiveTo compare Brock model and Lung imaging reporting and data system ( LU-RADS) in differentiating malignant subsolid pulmonary nodules (SPN) from benign nodules.MethodsThe clinical data of 133 patients with SPN who underwent surgical resected and were pathologically confirmed from Jan 2018 to Dec 2021 were retrospectively analyzed. According to the pathological results,the patients were divided into two groups:benign SPN group(41 patients) and malignant SPN group(92 patients),and their clinical data were statistically analyzed. The malignant probability of SPN was calculated by Brock model. LU-RADS category of SPN was determined by two radiologists independently. The Receiver operating characteristic (ROC) curves of Brock model and LU-RADS were drawn respectively,and the area under curve (AUC) was comparable.ResultsPatients with malignant SPN were significantly older than patients with benign (P<0.01). The maximum diameter of malignant SPN was significantly larger than that of the benign SPN (P<0.01). Margin characteristics of nodule included speculation (P<0.01),lobulation (P=0.02),and pleural indentation (P<0.01) were found more frequently in malignant SPN than in benign SPN. Nodule type in malignant SPN group was dominated by mGGN (77.17%). LU-RADS category 4A and 4B of the malignant SPN group were more than the benign SPN group (56 vs 4,P<0.05),the malignant probability of malignant SPN group was significantly higher than that of benign SPN group (0.21 vs 0.06,P<0.05).Brock model has a good correlation with LU-RADS (r=0.75,P<0.01),and had a comparable performance in diagnosing lung cancer for the SPN (AUC: 0.83 vs 0.78,P=0.16). Subgroup analysis showed that Brock model had a higher performance in diagnosing malignancy for the mixed ground glass nodules than LU-RADS(AUC: 0.92 vs 0.85,P=0.03),but both had a similar lower performance in the detection of malignancy from the pure ground glass nodules (AUC: 0.59 vs 0.55,P=0.66).ConclusionBrock model was superior malignant nodule.

参考文献/References:

[1]Cao M,Li H,Sun D,et al. Cancer burden of major cancers in China: A need for sustainable actions[J]. Cancer Commun (Lond),2020,40(5): 205-210.
[2]Aberle DR,Adams AM,Berg CD,et al. Reduced lung-cancer mortality with low-dose computed tomographic screening[J]. N Engl J Med,2011,365(5): 395-409.
[3]Hammer Mm,Hatabu H. Subsolid pulmonary nodules: Controversy and perspective[J]. Eur J Radiol Open,2020,7: 100267.
[4]许志高,唐光健,彭泰松,等. 肺部影像报告和数据系统(Lung-RADS1.1)更新解读[J]. 中华放射学杂志,2020,54(9): 904-907.
[5]Kastner J,Hossain R,Jeudy J,et al. Lung-RADS Version 1.0 versus Lung-RADS Version 1.1: Comparison of Categories Using Nodules from the National Lung Screening Trial[J]. Radiology,2021,300(1): 199-206.
[6]Mcwilliams A,Tammemagi Mc,Mayo Jr,et al. Probability of cancer in pulmonary nodules detected on first screening CT[J]. N Engl J Med,2013,369(10): 910-919.
[7]Al-Ameri A,Malhotra P,Thygesen H,et al. Risk of malignancy in pulmonary nodules: A validation study of four prediction models[J]. Lung Cancer,2015,89(1):27-30.
[8]张晓菊,白莉,金发光,等. 肺结节诊治中国专家共识(2018年版) [J]. 中华结核和呼吸杂志,2018,41(10): 763-771.
[9]Heber M,Naidich David P,Mo GJ,et al. Guidelines for Management of Incidental Pulmonary Nodules Detected on CT Images: From the Fleischner Society 2017[J]. Radiology,2017,284(1):228-243.
[10]Lee HW,Jin KN,Lee JK,et al. Long-Term Follow-Up of Ground-Glass Nodules After 5 Years of Stability[J]. J Thorac Oncol,2019,14(8): 1370-1377.
[11]Winter A,Aberle DR,Hsu W. External validation and recalibration of the Brock model to predict probability of cancer in pulmonary nodules using NLST data[J]. Thorax,2019,74(6):551-563.
[12]刘海洋,张晓菊.预测模型在肺癌早期诊断中的应用[J].结核与肺部疾病杂志,2021,2(3):262-266.
[13]Ramaswamy A. Lung Cancer Screening: Review and 2021 Update[J]. Curr Pulmonol Rep,2022,11(1):15-28.
[14]American College of Radiology. Lung imaging reporting and data system (Lung-RADS).https://www.acr.org/Clinical-Resources/Reporting-and-Data-Systems/Lung-Rads.
[15]Hammer MM,Palazzo LI,Kong CY,et al. Cancer Risk in Subsolid Nodules in the National Lung Screening Trial[J]. Radiology,2019,293(2): 441-448.
[16]Chelala L,Hossain R,Kazerooni EA,et al. Lung-RADS Version 1.1: Challenges and a Look Ahead,From the AJR Special Series on Radiology Reporting and Data Systems[J]. AJR Am J Roentgenol,2021,216(6): 1411-1422.
[17]林思阳,蒿艳蓉,吕艳茹,等.外周血循环肿瘤细胞及其趋化因子受体CCR9与非小细胞肺癌的临床相关性[J].医学研究生学报,2019,32(9):948-953.
[18]沈凯凯.外泌体在非小细胞肺癌中的研究进展[J].东南国防医药,2018,20(4):399-403.

相似文献/References:

[1]毛玲.基于临床及病理参数构建并验证预测乳腺浸润性导管癌淋巴结转移的风险模型[J].医学研究与战创伤救治(原医学研究生学报),2022,24(4):390.[doi:10.3969/j.issn.1672-271X.2022.04.012]
 MAO Ling.Construction and validation of a risk model for predicting lymph node metastasis of breast infiltrating duct carcinoma based on clinical and pathological parameters[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2022,24(6):390.[doi:10.3969/j.issn.1672-271X.2022.04.012]

备注/Memo

备注/Memo:
基金项目:湖南省中医药科研计划项目(2021112)
更新日期/Last Update: 2023-01-18