|本期目录/Table of Contents|

[1]朱寻,卢光明.人工智能在骨肌影像中的诊断应用进展[J].医学研究与战创伤救治(原医学研究生学报),2023,25(1):63-67.[doi:10.3969/j.issn.1672-271X.2023.01.013]
 ZHU Xun,LU Guangming.Diagnostic and application of artificial intelligence in musculoskeletal system imaging[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2023,25(1):63-67.[doi:10.3969/j.issn.1672-271X.2023.01.013]
点击复制

人工智能在骨肌影像中的诊断应用进展()

《医学研究与战创伤救治》(原医学研究生学报)[ISSN:1672-271X/CN:32-1713/R]

卷:
第25卷
期数:
2023年1期
页码:
63-67
栏目:
综述
出版日期:
2023-05-10

文章信息/Info

Title:
Diagnostic and application of artificial intelligence in musculoskeletal system imaging
作者:
朱寻卢光明
作者单位:210002南京,南京医科大学金陵临床医学院(东部战区总医院)医学影像科[朱寻(现在上海市宝山区中西医结合医院医学影像科工作)、卢光明]
Author(s):
ZHU Xun LU Guangming
(Department of Radiology,Jinling Clinical College of Medicine, Nanjing Medical University/General Hospital of Eastern Theater Command,PLA,Nanjing 210002,Jiangsu,China)
关键词:
人工智能骨肌影像诊断应用
Keywords:
artificial intelligence bone muscle imaging diagnosisapplication
分类号:
R445.2
DOI:
10.3969/j.issn.1672-271X.2023.01.013
文献标志码:
A
摘要:
目前人工智能技术在医学领域的研究和应用中迅速发展,医学影像也是人工智能在医学领域中的重要应用方向之一。人工智能技术已成功应用于评估儿童骨龄、检测骨折和评估X线片上骨关节炎的严重程度等方面,最近的研究也证明了使用人工智能技术在CT和MRI 上识别各种病理异常的可行性,包括转移性疾病、内部紊乱、骨折、感染和关节退化等。文章主要就人工智能在骨肌系统影像的诊断和应用进展进行综述。
Abstract:
At present, artificial intelligence technology has developed rapidly in the research and application of the medical field. Medical imaging is also one of the important application directions of artificial intelligence in the medical field.AI has been successful in assessing bone age in children, detecting fractures, and assessing the severity of osteoarthritis on X-rays, and recent studies have demonstrated the feasibility of using AI to identify various pathological abnormalities on CT and MRI, including metastatic diseases, internal disorders, fractures, infections and joint degeneration.This paper mainly summarizes the diagnosis and application of artificial intelligence in bone and muscle system imaging.

参考文献/References:

[1]Hricak H. 2016 New Horizons Lecture: beyond imaging-radiology oftomorrow[J]. Radiology, 2018,286(3):764-775.
[2]LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature,2015,521: 436-444.
[3]Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017,42:60-88.
[4]Shen D, Wu G, Suk HI. Deep learning in medical image analysis[J]. Annu Rev Biomed Eng, 2017,19:221-248.
[5]Liu F, Zhou Z, Jang H,et al. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging[J]. Magn Reson Med, 2018, 79(4):2379-2391.
[6]Zhou Z, Zhao G, Kijowski R,et al. Deep convolutional neural network for segmentation of knee joint anatomy[J]. Magn Reson Med, 2018, 80(6):2759-2770.
[7]Norman B, Pedoia V, Majumdar S. Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry[J]. Radiology, 2018, 288(1):177-185.
[8]Kijowski R, Liu F, Caliva F, et al.Deep Learning for Lesion Detection, Progression, and Prediction of Musculoskeletal Disease[J]. J Magn Reson Imaging, 2020, 52(6): 1607-1619.
[9]卢光明,张志强.人工智能医学影像[J].医学研究生学报,2018,31(7):683-687.
[10]Kalmet PHS, Sanduleanu S, Primakov S, et al.Deep learning in fracture detection: a narrative review[J].Acta Orthop, 2020, 91(2): 215-220.
[11]Zhou XW, Wang H, Feng CY,et al. Emerging Applications of Deep Learning in Bone Tumors: Current Advances and Challenges[J]. Front Oncol, 2022, 12: 908873.
[12]Olczak J, Fahlberg N, Maki A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs [J]. Acta Orthop, 2017, 88(6): 581-586.
[13]Cheng CT, Ho TY, Lee TY, et al. Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs[J]. Eur Radiol, 2019,29(10):5469-5477.
[14]Urakawa T, Tanaka Y, Goto S,et al. Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network[J]. Skeletal Radiol, 2019, 48(2):239-244.
[15]Kitamura G, Chung CY, Moore BE. Ankle fracture detection utilizing a convolutional neural network ensemble implemented with a small sample, de novo training, and multiview incorporation[J]. J Digit Imaging, 2019,32(4):672-677.
[16]Lindsey R,Daluiski A,Chopra S,et al. Deep neural network improves fracture detection by clinicians[J].Proc Natl Acad Sci USA,2018,115(45):11591-1596.
[17]Raghavendra U, Bhat NS, Gudigar A,et al. Automated system for the detection of thoracolumbar fractures using a CNN architecture[J]. Futur Gener Comput Syst, 2018,85:184-189.
[18]Pranata YD, Wang KC, Wang JC, et al. Deep learning and SURF for automated classification and detection of calcaneus fractures in CT images[J]. Comput Methods Programs Biomed, 2019,171:27-37.
[19]Chea P,Mandell JC. Current applications and future directions of deep learning in musculoskeletal radiology[J]. Skeletal Radiol,2019,49(2):183-197.
[20]Larson DB, Chen MC, Lungren MP,et al. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs[J]. Radiology, 2018,287(1):313-322.
[21]Liu F, Zhou Z, Samsonov A, et al. Deep learning approach for evaluating knee MR images: Achieving high diagnostic performance for cartilage lesion detection[J]. Radiology, 2018,289(1):160-169.
[22]Pedoia V, Norman B, Mehany SN,et al. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects[J]. J Magn Reson Imaging, 2019,49:400-410.
[23]Jie Li, Kun Qian,Jinyong Liu, et al.Identification and diagnosis of meniscus tear by magnetic resonance imaging using a deep learning model[J]. J Orthop Translat, 2022,34: 91-101.
[24]Roblot V, Giret Y, Bou Antoun M, et al. Artificial intelligence to diagnose meniscus tears on MRI[J]. Diagn Interv Imaging, 2019,100(4):243-249.
[25]Couteaux V, Si-Mohamed S, Nempont O, et al. Automatic knee meniscus tear detection and orientation classification with Mask-RCNN[J]. Diagn Interv Imaging, 2019,100(4):235-242.
[26]Awan MJ, Rahim MSM, Salim N, et al.Improved Deep Convolutional Neural Network to Classify Osteoarthritis from Anterior Cruciate Ligament Tear Using Magnetic Resonance Imaging[J].J Pers Med, 2021, 11(11): 1163.
[27]Liu F, Guan B, Zhou Z, et al. Fully-automated diagnosis of anterior cruciate ligament tears on knee MR images using deep learning[J]. Radiol Artif Intell, 2019, 1(3):180091.
[28]Chang PD, Wong TT, Rasiej MJ. Deep learning for detection of complete anterior cruciate ligament tear[J]. J Digit Imaging, 2019, 32(6):980-986.
[29]Chmelik J, Jakubicek R, Walek P, et al. Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data[J]. Med Image Anal, 2018,49:76-88.
[30]Xu L, Tetteh G, Lipkova J, et al. Automated whole-body bone lesion detection for multiple myeloma on 68Ga-pentixafor PET/CT imaging using deep learning methods[J]. Contrast Media Mol Imaging,2018,2018: 2391925.
[31]Jamaludin A, Kadir T, Zisserman A. SpineNet: Automated classification and evidence visualization in spinal MRIs[J]. Med Image Anal, 2017,41:63-73.
[32]Jamaludin A, Lootus M, Kadir T, et al. ISSLS prize in bioengineering science 2017: Automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist[J]. Eur Spine J, 2017,26:1374-1383.
[33]Kim K, Kim S, Lee YH, et al. Performance of the deep convolutional neural network based magnetic resonance image scoring algorithm for differentiating between tuberculous and pyogenic spondylitis[J]. Sci Rep, 2018,8(1):13124.
[34]AbramoffB, Caldera FE.Osteoarthritis: Pathology, Diagnosis, and Treatment Options[J].Med Clin North Am, 2020,104(2):293-311.
[35]Larson DB, Chen MC, Lungren MP,et al. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs[J]. Radiology, 2018,287(1):313-322.
[36]Tiulpin A, Thevenot J, Rahtu E,et al. Automatic knee osteoarthritis diagnosis from plain radiographs: A deep learning-based approach[J]. Sci Rep, 2018,8(1):1727.
[37]Norman B, Pedoia V, Noworolski A,et al. Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs[J]. J Digit Imaging, 2018, 32(3):471-477.

相似文献/References:

[1]李艳,朱欢欢.人工智能与大数据在心血管内科护理中的应用[J].医学研究与战创伤救治(原医学研究生学报),2021,23(03):298.[doi:10.3969/j.issn.1672-271X.2021.03.016]
 LI Yan,ZHU Huan-huan.Application of artificial intelligence and big data in nursing of cardiovascular department[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2021,23(1):298.[doi:10.3969/j.issn.1672-271X.2021.03.016]
[2]何柳,邢滔,许定虎,等.人工智能技术在诊断颅内动脉瘤中的临床意义[J].医学研究与战创伤救治(原医学研究生学报),2023,25(2):156.[doi:10.3969/j.issn.1672-271X.2023.02.009]
 HE Liu,XING Tao,XU Dinghu,et al.Clinical significance of artificial intelligence technology in the diagnosis of intracranial aneurysms[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2023,25(1):156.[doi:10.3969/j.issn.1672-271X.2023.02.009]

备注/Memo

备注/Memo:
基金项目:科技部科技创新2030--重大项目“新一代人工智能”专项(2020AAA0109505)
更新日期/Last Update: 2023-04-19