[1]Hricak H. 2016 New Horizons Lecture: beyond imaging-radiology oftomorrow[J]. Radiology, 2018,286(3):764-775.
[2]LeCun Y, Bengio Y, Hinton G. Deep learning[J]. Nature,2015,521: 436-444.
[3]Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017,42:60-88.
[4]Shen D, Wu G, Suk HI. Deep learning in medical image analysis[J]. Annu Rev Biomed Eng, 2017,19:221-248.
[5]Liu F, Zhou Z, Jang H,et al. Deep convolutional neural network and 3D deformable approach for tissue segmentation in musculoskeletal magnetic resonance imaging[J]. Magn Reson Med, 2018, 79(4):2379-2391.
[6]Zhou Z, Zhao G, Kijowski R,et al. Deep convolutional neural network for segmentation of knee joint anatomy[J]. Magn Reson Med, 2018, 80(6):2759-2770.
[7]Norman B, Pedoia V, Majumdar S. Use of 2D U-Net convolutional neural networks for automated cartilage and meniscus segmentation of knee MR imaging data to determine relaxometry and morphometry[J]. Radiology, 2018, 288(1):177-185.
[8]Kijowski R, Liu F, Caliva F, et al.Deep Learning for Lesion Detection, Progression, and Prediction of Musculoskeletal Disease[J]. J Magn Reson Imaging, 2020, 52(6): 1607-1619.
[9]卢光明,张志强.人工智能医学影像[J].医学研究生学报,2018,31(7):683-687.
[10]Kalmet PHS, Sanduleanu S, Primakov S, et al.Deep learning in fracture detection: a narrative review[J].Acta Orthop, 2020, 91(2): 215-220.
[11]Zhou XW, Wang H, Feng CY,et al. Emerging Applications of Deep Learning in Bone Tumors: Current Advances and Challenges[J]. Front Oncol, 2022, 12: 908873.
[12]Olczak J, Fahlberg N, Maki A, et al. Artificial intelligence for analyzing orthopedic trauma radiographs [J]. Acta Orthop, 2017, 88(6): 581-586.
[13]Cheng CT, Ho TY, Lee TY, et al. Application of a deep learning algorithm for detection and visualization of hip fractures on plain pelvic radiographs[J]. Eur Radiol, 2019,29(10):5469-5477.
[14]Urakawa T, Tanaka Y, Goto S,et al. Detecting intertrochanteric hip fractures with orthopedist-level accuracy using a deep convolutional neural network[J]. Skeletal Radiol, 2019, 48(2):239-244.
[15]Kitamura G, Chung CY, Moore BE. Ankle fracture detection utilizing a convolutional neural network ensemble implemented with a small sample, de novo training, and multiview incorporation[J]. J Digit Imaging, 2019,32(4):672-677.
[16]Lindsey R,Daluiski A,Chopra S,et al. Deep neural network improves fracture detection by clinicians[J].Proc Natl Acad Sci USA,2018,115(45):11591-1596.
[17]Raghavendra U, Bhat NS, Gudigar A,et al. Automated system for the detection of thoracolumbar fractures using a CNN architecture[J]. Futur Gener Comput Syst, 2018,85:184-189.
[18]Pranata YD, Wang KC, Wang JC, et al. Deep learning and SURF for automated classification and detection of calcaneus fractures in CT images[J]. Comput Methods Programs Biomed, 2019,171:27-37.
[19]Chea P,Mandell JC. Current applications and future directions of deep learning in musculoskeletal radiology[J]. Skeletal Radiol,2019,49(2):183-197.
[20]Larson DB, Chen MC, Lungren MP,et al. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs[J]. Radiology, 2018,287(1):313-322.
[21]Liu F, Zhou Z, Samsonov A, et al. Deep learning approach for evaluating knee MR images: Achieving high diagnostic performance for cartilage lesion detection[J]. Radiology, 2018,289(1):160-169.
[22]Pedoia V, Norman B, Mehany SN,et al. 3D convolutional neural networks for detection and severity staging of meniscus and PFJ cartilage morphological degenerative changes in osteoarthritis and anterior cruciate ligament subjects[J]. J Magn Reson Imaging, 2019,49:400-410.
[23]Jie Li, Kun Qian,Jinyong Liu, et al.Identification and diagnosis of meniscus tear by magnetic resonance imaging using a deep learning model[J]. J Orthop Translat, 2022,34: 91-101.
[24]Roblot V, Giret Y, Bou Antoun M, et al. Artificial intelligence to diagnose meniscus tears on MRI[J]. Diagn Interv Imaging, 2019,100(4):243-249.
[25]Couteaux V, Si-Mohamed S, Nempont O, et al. Automatic knee meniscus tear detection and orientation classification with Mask-RCNN[J]. Diagn Interv Imaging, 2019,100(4):235-242.
[26]Awan MJ, Rahim MSM, Salim N, et al.Improved Deep Convolutional Neural Network to Classify Osteoarthritis from Anterior Cruciate Ligament Tear Using Magnetic Resonance Imaging[J].J Pers Med, 2021, 11(11): 1163.
[27]Liu F, Guan B, Zhou Z, et al. Fully-automated diagnosis of anterior cruciate ligament tears on knee MR images using deep learning[J]. Radiol Artif Intell, 2019, 1(3):180091.
[28]Chang PD, Wong TT, Rasiej MJ. Deep learning for detection of complete anterior cruciate ligament tear[J]. J Digit Imaging, 2019, 32(6):980-986.
[29]Chmelik J, Jakubicek R, Walek P, et al. Deep convolutional neural network-based segmentation and classification of difficult to define metastatic spinal lesions in 3D CT data[J]. Med Image Anal, 2018,49:76-88.
[30]Xu L, Tetteh G, Lipkova J, et al. Automated whole-body bone lesion detection for multiple myeloma on 68Ga-pentixafor PET/CT imaging using deep learning methods[J]. Contrast Media Mol Imaging,2018,2018: 2391925.
[31]Jamaludin A, Kadir T, Zisserman A. SpineNet: Automated classification and evidence visualization in spinal MRIs[J]. Med Image Anal, 2017,41:63-73.
[32]Jamaludin A, Lootus M, Kadir T, et al. ISSLS prize in bioengineering science 2017: Automation of reading of radiological features from magnetic resonance images (MRIs) of the lumbar spine without human intervention is comparable with an expert radiologist[J]. Eur Spine J, 2017,26:1374-1383.
[33]Kim K, Kim S, Lee YH, et al. Performance of the deep convolutional neural network based magnetic resonance image scoring algorithm for differentiating between tuberculous and pyogenic spondylitis[J]. Sci Rep, 2018,8(1):13124.
[34]AbramoffB, Caldera FE.Osteoarthritis: Pathology, Diagnosis, and Treatment Options[J].Med Clin North Am, 2020,104(2):293-311.
[35]Larson DB, Chen MC, Lungren MP,et al. Performance of a deep-learning neural network model in assessing skeletal maturity on pediatric hand radiographs[J]. Radiology, 2018,287(1):313-322.
[36]Tiulpin A, Thevenot J, Rahtu E,et al. Automatic knee osteoarthritis diagnosis from plain radiographs: A deep learning-based approach[J]. Sci Rep, 2018,8(1):1727.
[37]Norman B, Pedoia V, Noworolski A,et al. Applying densely connected convolutional neural networks for staging osteoarthritis severity from plain radiographs[J]. J Digit Imaging, 2018, 32(3):471-477.
[1]李艳,朱欢欢.人工智能与大数据在心血管内科护理中的应用[J].医学研究与战创伤救治(原医学研究生学报),2021,23(03):298.[doi:10.3969/j.issn.1672-271X.2021.03.016]
LI Yan,ZHU Huan-huan.Application of artificial intelligence and big data in nursing of cardiovascular department[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2021,23(1):298.[doi:10.3969/j.issn.1672-271X.2021.03.016]
[2]何柳,邢滔,许定虎,等.人工智能技术在诊断颅内动脉瘤中的临床意义[J].医学研究与战创伤救治(原医学研究生学报),2023,25(2):156.[doi:10.3969/j.issn.1672-271X.2023.02.009]
HE Liu,XING Tao,XU Dinghu,et al.Clinical significance of artificial intelligence technology in the diagnosis of intracranial aneurysms[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2023,25(1):156.[doi:10.3969/j.issn.1672-271X.2023.02.009]