|本期目录/Table of Contents|

[1]何柳,邢滔,许定虎,等.人工智能技术在诊断颅内动脉瘤中的临床意义[J].医学研究与战创伤救治(原医学研究生学报),2023,25(2):156-159.[doi:10.3969/j.issn.1672-271X.2023.02.009]
 HE Liu,XING Tao,XU Dinghu,et al.Clinical significance of artificial intelligence technology in the diagnosis of intracranial aneurysms[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2023,25(2):156-159.[doi:10.3969/j.issn.1672-271X.2023.02.009]
点击复制

人工智能技术在诊断颅内动脉瘤中的临床意义()

《医学研究与战创伤救治》(原医学研究生学报)[ISSN:1672-271X/CN:32-1713/R]

卷:
第25卷
期数:
2023年2期
页码:
156-159
栏目:
临床研究
出版日期:
2023-05-31

文章信息/Info

Title:
Clinical significance of artificial intelligence technology in the diagnosis of intracranial aneurysms
作者:
何柳邢滔许定虎余玉盛张宏
作者单位:211100南京,南京市江宁医院医学影像科(何柳、邢滔、许定虎、余玉盛、张宏)
Author(s):
HE LiuXING TaoXU DinghuYU YushengZHANG Hong
(Department of Radiology,Nanjing Jiangning Hospital,Nanjing 211100,Jiangsu,China)
关键词:
人工智能颅内动脉瘤CTA图像后处理
Keywords:
artificial intelligenceintracranial aneurysmscomputed tomography angiographyimage post-process
分类号:
R743
DOI:
10.3969/j.issn.1672-271X.2023.02.009
文献标志码:
A
摘要:
目的探究CT血管造影(CTA)人工智能(AI)后处理技术在诊断颅内动脉瘤中的临床意义。方法回顾性分析2020年10月至2022年10月因临床疑诊颅内动脉瘤在南京市江宁医院行颅脑CTA及数字减影血管造影(DSA)检查的131例患者临床及影像资料,分别通过数坤CerebralDoc头颈CT智能辅助诊断系统(AI组)与影像人工后处理法(人工组)对2组在工作效率、图像质量以及诊断效能方面进行统计学比较。结果AI组和人工组在平均完成时间[(176.74±17.49)s vs(822.05±103.11)s]、图像质量主观评分[(3.88±0.33)vs(3.64±0.48)]方面差异有统计学意义(P<0.05);以DSA检查结果为金标准,AI组、人工组对颅内动脉瘤的检出率分别为91.43%、92.38%,差异无统计学意义(P>0.05);AI组与人工组诊断颅内动脉瘤的灵敏度、特异度、准确率、阳性预测值及阴性预测值分别为91.43% vs 92.38%、88.46% vs 80.67%、90.84% vs 90.08%、96.97% vs 95.10%、71.88% vs 72.14%,组间比较差异均无统计学意义(P>0.05)。结论采用AI技术能够获得更佳的后处理图像及显著提高影像医师的工作效率,并在颅内动脉瘤诊断方面具有精准可靠的辅助作用。
Abstract:
Objective To explore the clinical significance of computed tomography angiography(CTA) artificial intelligence(AI) post-processing technology in the diagnosis of intracranial aneurysm.MethodsThe clinical and imaging data of 131 patients who suspectedclinical diagnosis of intracranial aneurysm and received CTA and DSA examination in our hospital from October 2020 to October 2022 were retrospectively analyzed. The data of working efficiency,image quality and diagnostic efficacy of the two groups werecompared statistically by ShuKun CerebralDoc head and neck CT intelligent auxiliary diagnostic system(AI group) and artificial image post-processing(artificial group), respectively.ResultsThe AIgroup was significantly better than the artificial group in terms of average completion time[(176.74±17.49)s vs (822.05±103.11)s] and subjective score of image quality[(3.88±0.33)vs(3.64±0.48)](P<0.05).The DSA results were considered the gold standard. The detection rates of intracranial aneurysms in the AI group and artificial group were 91.43% and 92.38%.respectively(P>0.05). Thesensitivity,specificity,accuracy,positive predictive value and negative predictive value of AI group and artificial group in diagnosing intracranial aneurysm were 91.43% vs 92.38%, 88.46% vs 80.67%, 90.84% vs 90.08%, 96.97% vs 95.10%, 71.88% vs 72.14%, respectively(P>0.05).ConclusionAI technology can obtain better post-processing images and improve the work efficiency of radiologistssignificantly,and get a precise and reliable auxiliary role in the diagnosis of intracranial aneurysm.

参考文献/References:

[1]Thompson BG,Brown Jr RD,Amin-Hanjani S,et al.Guidelines for the management of patients with unruptured intracranial aneurysms[J].Stroke,2015,46(8):2368-2400.
[2]中华医学会神经病学分会,中华医学会神经病学分会脑血管病学组,中华医学会神经病学分会神经血管介入协作组.中国蛛网膜下腔出血诊治指南2019[J].中华神经科杂志,2019,52(12):1006-1021.
[3]Chalouhi N,Hoh BL,Hasan D.Review of cerebral aneurysm formation,growth, and rupture[J].Stroke,2013,44:3613-3622.
[4]Shi Z,Hu B,Schoepf UJ,et al.Artificial intelligence in the management of intracranial aneurysms:current status and future perspectives[J].AJNR,2020,41:373-379.
[5]麻红梅,李月美,李晓芳,等.动脉瘤性蛛网膜下腔出血患者术后超早期康复对住院时间、并发症和脑血管痉挛影响的meta分析[J].国际脑血管病杂志,2022,30(7):508-512.
[6]祝斐,吴明,金卫星,等.大脑中动脉瘤破裂出血合并脑疝的急诊手术治疗[J].东南国防医药,2020,22(5):521-523.
[7]顾大群,张扬,晁迎九,等. 栓塞治疗对老年未破裂颅内动脉瘤患者头痛的效果及影响因素分析[J]. 中华老年医学杂志,2022,41(9): 1057-1060.
[8]赵伟国,粘琦玉,夏文骞.CTA联合彩色多普勒超声诊断颅内动脉瘤的准确性及影像特点研究[J].中国CT和MRI杂志,2021,19(1):47-49.
[9]Larson DB,Chen MC,Lungren MP,et al.Performance of a deep learning neural network model in assessing skeletal maturity on pediatric hand radiographs[J].Radiology,2018,287(1):313-322.
[10]Majkowska A,Mittal S,Steiner DF,et al.Chest radiograph interpretation with deep learning models:assessment with radiologist adjudicated eference standards and population adjusted evaluation[J].Radiology,2020,294 (2) : 421-431.
[11]Sarikaya B,Sarikaya S,Deniz FE,et al. Unregistered subtractedCT angiography for the visualization of intracranial arteries at ornear the skullbase:preliminary experience[J]. Diagn Interv Radio,2007,13:105-108.
[12]蔡金秀,任昕,孙兆男,等. 基于深度学习训练胸部X线片图像性质分类人工智能模型的初步研究[J]. 实用放射学杂志,2022,38(7):1184-1188.
[13]赵福琳,陈澜菁,刘俊七,等. 对比人工与人工智能图像后处理冠状动脉CT血管造影显示冠状动脉解剖及其病变[J]. 中国介入影像与治疗学,2022,19(12):782-786.
[14]Fu F,Wei J,Zhang M,et al. Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network[J].Nat Commun,2020,11(1):4829.
[15]Russick J,Joubert PE,Gillard-Bocquet M,et al.Naturalkiller cells in the humanlungtumormicroenvironmentdisplayimmuneinhibitory functions[J].J Immunother Cancer,2020,8(2): e001054.doi: 10.1136/jitc-2020-001054
[16]杨威威,郑传胜,梁奕,等.320排动态容积CT血管成像诊断颅内动脉瘤的价值[J].医学影像学杂志,2018,28(5):706-709.
[17]陈功,何康明,秦宣锋,等.脉络膜前动脉起始端动脉瘤新分型及其在介入治疗中的初步应用[J].中华放射性杂志,2021,55(2):185-190.
[18]徐棣豪,钟丽玲,宋建勋. 脑血管几何形态学特征和先天变异的临床意义[J]. 国际脑血管病杂志,2019,27(10):780-785.
[19]Shi Z,Miao CC,Schoepf UJ,et al. A clinically applicabledeep-learning model for detecting intracranial aneurysm incomputed tomography angiography images[J]. Nat Commun,2020,11(1):6090.
[20]Kim HC,Rhim JK,Ahn JH,et al. Machine learning application for rupture risk assessment in small-sized intracranial aneurysm[J]. J Clin Med,2019,8(5):683.

相似文献/References:

[1]龙连圣,辛志成,张建忠,等.开颅夹闭治疗颅内前循环破裂动脉瘤21例疗效分析[J].医学研究与战创伤救治(原医学研究生学报),2013,15(04):390.[doi:10.3969/j.issn.1672-271X.2013.04.023]
[2]李艳,朱欢欢.人工智能与大数据在心血管内科护理中的应用[J].医学研究与战创伤救治(原医学研究生学报),2021,23(03):298.[doi:10.3969/j.issn.1672-271X.2021.03.016]
 LI Yan,ZHU Huan-huan.Application of artificial intelligence and big data in nursing of cardiovascular department[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2021,23(2):298.[doi:10.3969/j.issn.1672-271X.2021.03.016]
[3]朱寻,卢光明.人工智能在骨肌影像中的诊断应用进展[J].医学研究与战创伤救治(原医学研究生学报),2023,25(1):63.[doi:10.3969/j.issn.1672-271X.2023.01.013]
 ZHU Xun,LU Guangming.Diagnostic and application of artificial intelligence in musculoskeletal system imaging[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2023,25(2):63.[doi:10.3969/j.issn.1672-271X.2023.01.013]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2023-07-24