|本期目录/Table of Contents|

[1]李慧娟,叶亮,张方综述,等.CD39在肿瘤免疫中的研究进展[J].医学研究与战创伤救治(原医学研究生学报),2018,20(01):45-49.[doi:10.3969/j.issn.1672-271X.2018.01.010]
点击复制

CD39在肿瘤免疫中的研究进展()

《医学研究与战创伤救治》(原医学研究生学报)[ISSN:1672-271X/CN:32-1713/R]

卷:
第20卷
期数:
2018年01期
页码:
45-49
栏目:
综述
出版日期:
2018-01-22

文章信息/Info

Title:
-
作者:
李慧娟 叶亮 张方综述 宋勇审校
作者单位:210009南京,南京医科大学金陵医院(南京军区南京总医院) 呼吸内科(李慧娟、叶亮、 张方、宋勇)
Author(s):
-
关键词:
CD39腺苷肿瘤肿瘤免疫
Keywords:
-
分类号:
R392
DOI:
10.3969/j.issn.1672-271X.2018.01.010
文献标志码:
A
摘要:
CD39是胞外二三磷酸核苷酸水解酶1(NTPDase 1),是一种广泛表达于人体组织细胞表面的核苷酸水解酶,是参与产生免疫抑制性的腺苷过程中的限速酶。CD39与肿瘤的发生发展密切相关。CD39的免疫抑制作用是通过其产生的腺苷介导的,腺苷作用于肿瘤中浸润的免疫细胞从而发挥免疫抑制效应。近年来,利用CD39化学抑制剂、单克隆抗体在体内外实验的抗肿瘤治疗中取得了显著疗效,为抗肿瘤治疗提供了新途径。
Abstract:
-

参考文献/References:

[1]Di Virgilio F, Adinolfi E. Extracellular purines, purinergic receptors and tumor growth[J]. Oncogene, 2017,36(3):293-303.[2]Faas MM, Saez T, de Vos P. Extracellular ATP and adenosine: The Yin and Yang in immune responses?[J] Mol Aspects Med, 2017,55:9-19.[3]Rowe M, Hildreth JE, Rickinson AB, et al. Monoclonal antibodies to Epstein-Barr virus-induced, transformation-associated cell surface antigens: binding patterns and effect upon virus-specific T-cell cytotoxicity[J]. Int J Cancer, 1982,29(4):373-381.[4]Cekic C, Linden J. Purinergic regulation of the immune system[J]. Nat Rev Immunol, 2016,16(3):177-192.[5]Allard B, Beavis PA, Darcy PK, et al. Immunosuppressive activities of adenosine in cancer[J]. Curr Opin Pharmacol, 2016,29:7-16.[6]Antonioli L, Blandizzi C, Pacher P, et al. Immunity, inflammation and cancer: a leading role for adenosine[J]. Nat Rev Cancer, 2013,13(12):842-857.[7]Bastid J, Regairaz A, Bonnefoy N, et al. Inhibition of CD39 enzymatic function at the surface of tumor cells alleviates their immunosuppressive activity[J]. Cancer Immunol Res, 2015,3(3):254-265.[8]Allard B, Longhi MS, Robson SC, et al. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets[J]. Immunol Rev, 2017,276(1):121-144.[9]Bastid J, Cottalorda-Regairaz A, Alberici G, et al. ENTPD1/CD39 is a promising therapeutic target in oncology[J]. Oncogene, 2013,32(14):1743-1751.[10]Sanmarco LM, Ponce NE, Visconti LM, et al. IL-6 promotes M2 macrophage polarization by modulating purinergic signaling and regulates the lethal release of nitric oxide during Trypanosoma cruzi infection[J]. Biochim Biophys Acta, 2017,1863(4):857-869.[11]Younas M, Hue S, Lacabaratz C, et al. IL-7 modulates in vitro and in vivo human memory T regulatory cell functions through the CD39/ATP axis[J]. J Immunol, 2013,191(6):3161-3468.[12]Mascanfroni ID, Yeste A, Vieira SM, et al. IL-27 acts on DCs to suppress the T cell response and autoimmunity by inducing expression of the immunoregulatory molecule CD39[J]. Nat Immunol, 2013,14(10):1054-1063.[13]Li J, Wang L, Chen X, et al. CD39/CD73 upregulation on myeloid-derived suppressor cells via TGF-beta-mTOR-HIF-1 signaling in patients with non-small cell lung cancer[J]. Oncoimmunology, 2017,6(6):e1320011.[14]Bullen JW, Tchernyshyov I, Holewinski RJ, et al. Protein kinase A-dependent phosphorylation stimulates the transcriptional activity of hypoxia-inducible factor 1[J]. Sci Signal, 2016,9(430):ra56.[15]Chalmin F, Mignot G, Bruchard M, et al. Stat3 and Gfi-1 transcription factors control Th17 cell immunosuppressive activity via the regulation of ectonucleotidase expression[J]. Immunity, 2012,36(3):362-373.[16]Zhong SY, Chen YX, Fang M, et al. Low-dose levodopa protects nerve cells from oxidative stress and up-regulates expression of pCREB and CD39[J]. PLoS One, 2014,9(4):e95387.[17]Cai XY, Li J, et al. Overexpression of CD39 and high tumoral CD39+/CD8+ratio are associated with adverse prognosis in resectable gastric cancer[J]. Int J Clin Exp Pathol 2015,8(11):14757-14764.[18]Cai XY, Ni XC, Yi Y, et al. Overexpression of CD39 in hepatocellular carcinoma is an independent indicator of poor outcome after radical resection[J]. Medicine (Baltimore), 2016,95(40):e4989.[19]Cai XY, Wang XF, Li J, et al. High expression of CD39 in gastric cancer reduces patient outcome following radical resection[J]. Oncol Lett, 2016,12(5):4080-4086.[20]Jackson SW, Hoshi T, Wu Y, et al. Disordered purinergic signaling inhibits pathological angiogenesis in cd39/Entpd1-null mice[J]. Am J Pathol, 2007,171(4):1395-1404.[21]Sun X, Wu Y, Gao W, et al. CD39/ENTPD1 expression by CD4+Foxp3+ regulatory T cells promotes hepatic metastatic tumor growth in mice[J]. Gastroenterology, 2010,139(3):1030-1040.[22]Kunzli BM, Bernlochner MI, Rath S, et al. Impact of CD39 and purinergic signalling on the growth and metastasis of colorectal cancer[J]. Purinergic Signal, 2011,7(2):231-241.[23]刘阳珷玥,杨亭,赵力,等.腺苷及其受体对中性粒细胞在炎症中的作用与机制研究进展[J].医学研究生学报,2014,27(11):1214-1218.[24]Mantovani A, Biswas SK, Galdiero MR, et al. Macrophage plasticity and polarization in tissue repair and remodelling[J]. J Pathol, 2013,229(2):176-185.[25]Hasko G, Pacher P. Regulation of macrophage function by adenosine[J]. Arterioscler Thromb Vasc Biol, 2012,32(4):865-869.[26]Sica A. Role of tumour-associated macrophages in cancer-related inflammation[J]. Exp Oncol, 2010,32(3):153-158.[27]Zanin RF, Braganhol E, Bergamin LS, et al. Differential macrophage activation alters the expression profile of NTPDase and ecto-5’-nucleotidase[J]. PLoS One, 2012,7(2):e31205.[28]Csoka B, Selmeczy Z, Koscso B, et al. Adenosine promotes alternative macrophage activation via A2A and A2B receptors[J]. FASEB J, 2012,26(1):376-386.[29]Koszalka P, Golunska M, Urban A, et al. Specific Activation of A3, A2A and A1 Adenosine Receptors in CD73-Knockout Mice Affects B16F10 Melanoma Growth, Neovascularization, Angiogenesis and Macrophage Infiltration[J]. PLoS One, 2016,11(3):e0151420.[30]Novitskiy SV, Ryzhov S, Zaynagetdinov R, et al. Adenosine receptors in regulation of dendritic cell differentiation and function[J]. Blood, 2008,112(5):1822-1831.[31]Cekic C, Sag D, Li Y, et al. Adenosine A2B receptor blockade slows growth of bladder and breast tumors[J]. J Immunol, 2012,188(1):198-205.[32]毛晓明.医学研究生的新知识储备——组织内调节性T细胞的表型及功能[J].医学研究生学报,2017,30(4):337-341.[33]Gu J, Ni X, Pan X, et al. Human CD39hi regulatory T cells present stronger stability and function under inflammatory conditions[J]. Cell Mol Immunol, 2017,14(6):521-528.[34]Sundstrm P SH, Langenes V. Regulatory T Cells from Colon Cancer Patients Inhibit Effector T-cell Migration through an Adenosine-Dependent Mechanism.[J]. Cancer Immunol Res, 2016,4(3):183-193.[35]Ma SR, Deng WW, Liu JF, et al. Blockade of adenosine A2A receptor enhances CD8+ T cells response and decreases regulatory T cells in head and neck squamous cell carcinoma[J]. Mol Cancer, 2017,16(1):99.[36]Lokshin A, Raskovalova T, Huang X, et al. Adenosine-mediated inhibition of the cytotoxic activity and cytokine production by activated natural killer cells[J]. Cancer Res, 2006,66(15):7758-7765.[37]Hu G, Wu P, Cheng P, et al. Tumor-infiltrating CD39+gammadeltaTregs are novel immunosuppressive T cells in human colorectal cancer[J]. Oncoimmunology, 2017,6(2):e1277305.[38]Smyth LA, Ratnasothy K, Tsang JY, et al. CD73 expression on extracellular vesicles derived from CD4+ CD25+ Foxp3+ T cells contributes to their regulatory function[J]. Eur J Immunol, 2013,43(9):2430-2440.[39]Kinsey GR, Huang L, Jaworska K, et al. Autocrine adenosine signaling promotes regulatory T cell-mediated renal protection[J]. J Am Soc Nephrol, 2012,23(9):1528-1537.[40]Shen L, Sundstedt A, Ciesielski M, et al. Tasquinimod modulates suppressive myeloid cells and enhances cancer immunotherapies in murine models[J]. Cancer Immunol Res, 2015,3(2):136-148.[41]Beavis PA, Milenkovski N, Henderson MA, et al. Adenosine Receptor 2A Blockade Increases the Efficacy of Anti-PD-1 through Enhanced Antitumor T-cell Responses[J]. Cancer Immunol Res, 2015,3(5):506-517.[42]Allard B, Pommey S, Smyth MJ, et al. Targeting CD73 enhances the antitumor activity of anti-PD-1 and anti-CTLA-4 mAbs[J]. Clin Cancer Res, 2013,19(20):5626-5635.

相似文献/References:

备注/Memo

备注/Memo:
基金项目:国家自然科学基金(81570025;81270079)
更新日期/Last Update: 2018-01-20