|本期目录/Table of Contents|

[1]向岑,王海英,魏义勇.DNA甲基化在心肌缺血再灌注损伤中的研究进展[J].医学研究与战创伤救治(原医学研究生学报),2020,22(6):638-642.[doi:10.3969/j.issn.1672-271X.2020.06.017]
 XIANG Cen reviewing,WANG Hai-ying,WEI Yi-yongchecking.Trend in research of DNA methylation in myocardial ischemia/reperfusion injury[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2020,22(6):638-642.[doi:10.3969/j.issn.1672-271X.2020.06.017]
点击复制

DNA甲基化在心肌缺血再灌注损伤中的研究进展()

《医学研究与战创伤救治》(原医学研究生学报)[ISSN:1672-271X/CN:32-1713/R]

卷:
第22卷
期数:
2020年6期
页码:
638-642
栏目:
综述
出版日期:
2020-11-20

文章信息/Info

Title:
Trend in research of DNA methylation in myocardial ischemia/reperfusion injury
作者:
向岑王海英魏义勇
作者单位:563000遵义,遵义医科大学附属医院麻醉科(向岑、王海英);563000遵义,贵州省麻醉与器官保护基础研究重点实验室(魏义勇)
Author(s):
XIANG Cen1 reviewing WANG Hai-ying1 WEI Yi-yong2checking
(1.Department of Anesthesiology, Affiliated Hospital of Zunyi University of Medicine, Zunyi 563000,Guizhou, China; 2.Guizhou Provincial Key Laboratory of Anesthesia and Organ Protection, Zunyi 563000,Guizhou, China)
关键词:
心肌缺血再灌注损伤表观遗传学DNA甲基化线粒体DNA
Keywords:
myocardial ischemia-reperfusion injury epigenetics DNA-methylation mitochondrial DNA
分类号:
R541
DOI:
10.3969/j.issn.1672-271X.2020.06.017
文献标志码:
A
摘要:
心肌缺血再灌注损伤(MIRI)的分子机制错综复杂,迄今尚未发现减轻MIRI的有效药物。高通量甲基化技术的快速发展,使表观遗传学研究、生物分子学研究以及临床研究有了新进展。研究证实,DNA甲基化参与多种疾病的生理过程。线粒体基因组(mtDNA)是细胞能量生成的场所,通过多种修饰途径调节心肌能量代谢。分析mtDNA的修饰与相关代谢物的改变,识别缺血再灌注相关靶基因的DNA甲基化,有益于了解表观遗传学在MIRI中的作用机制,对开发具有特异性抗 MIRI 的药物意义重大。文章主要就DNA甲基化的生物功能、DNA甲基化相关调控靶点与MIRI之间的关联行综述。
Abstract:
The molecular mechanism of myocardial ischemia-reperfusion injury (MIRI) is complicated. The effective drugs treating MIRI are still lost. The rapid development of high-throughput methylation technology has made new progress in epigenetics research, biomolecular research and clinical research. Certain studies have confirmed that DNA methylation is involved in the physiological processes of various diseases. The mitochondrial genome (Mitochondrial DNA, mtDNA) is the site of cell energy production, which regulates myocardial energy metabolism through various modification pathways. Analyzing the modification of mtDNA and the changes of related metabolites and identifying the DNA methylation of target genes related to ischemia/reperfusion (I/R) are helpful for us to understand the mechanism of epigenetics in MIRI. It is of great significance for the development of specific anti-MIRI drugs. This review mainly summarizes the biological function of DNA methylation, the correlation between the target of DNA methylation and MIRI.

参考文献/References:

[1]Cinzia P, Albert-Laszló B, Gianluigi C, et al. Epigenomic and transcriptomic approaches in the post-genomic era: path to novel targets for diagnosis and therapy of the ischaemic heart? Position Paper of the European Society of Cardiology Working Group on Cellular Biology of the Heart[J]. Cardiovasc Res, 2017, 113 (7):725-736.
[2]Kalogeris T, Baines CP, Krenz M, et al. Ischemia/Reperfusion[J]. Compr Physiol, 2016,7(1):113-170.
[3]Kalogeris T, Baines CP, Krenz M, et al. Cell biology of ischemia/reperfusion injury[J]. Int Rev Cell Mol Biol, 2012,298:229-317.
[4]Tang J, Zhuang S. Histone acetylation and DNA methylation in ischemia/reperfusion injury[J]. Clin Sci (Lond), 2019,133(4):597-609.
[5]Prachayasittikul V, Prathipati P, Pratiwi R, et al. Exploring the epigenetic drug discovery landscape[J]. Expert Opin Drug Discov, 2017,12(4):345-362.
[6]邸婷婷,卞涛.DNA甲基化在COPD发病机制中的研究进展[J].东南国防医药,2018,20(6):614-617.
[7]王震凯,汪芳裕.DNA甲基化与肿瘤[J].医学研究生学报,2011,24(6):641-645.
[8]Blaschke K, Ebata KT, Karimi MM, et al. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells[J]. Nature, 2013,500(7461):222-226.
[9]Lou S, Lee HM, Qin H, et al. Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation[J]. Genome Biol, 2014,15(7):408.
[10]Franco R, Schoneveld O, Georgakilas AG, et al. Oxidative stress, DNA methylation and carcinogenesis[J]. Cancer Lett, 266(1): 6-11.
[11]Thienpont B, Steinbacher J, Zhao H, et al. Tumour hypoxia causes DNA hypermethylation by reducing TET activity[J]. Nature,2016,537(7618):63-68.
[12]Heylen L, Thienpont B, Naesens M, et al. The Emerging Role of DNA Methylation in Kidney Transplantation: A Perspective[J]. Am J Transplant, 2016,16(4):1070-1078.
[13]Abdellatif M, Sedej S, Carmona-Gutierrez D, Madeo F, et al.Autophagy in Cardiovascular Aging[J]. Circ Res, 2018,123(7):803-824.
[14]Livingston MJ, Wang J, Zhou J, et al. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys[J]. Autophagy, 2019,15(12):2142-2162.
[15]梁丹阳, 戴汉川. PINK1/Parkin通路在线粒体自噬氧化损伤中的作用[J].中国细胞生物学学报,2018,40(1):116-123.
[16]Rasool S, Trempe JF. New insights into the structure of PINK1 and the mechanism of ubiquitin phosphorylation[J]. Crit Rev Biochem Mol Biol, 2018,53(5):515-534.
[17]Sekine S, Youle RJ. PINK1 import regulation; a fine system to convey mitochondrial stress to the cytosol[J]. BMC Biol, 2018,16(1):2.
[18]Zhou LY, Zhai M, Huang Y, et al. The circular RNA ACR attenuates myocardial ischemia/reperfusion injury by suppressing autophagy via modulation of the Pink1/FAM65B pathway[J]. Cell Death Differ, 2019,26(7):1299-1315.
[19]封冰,陈龙邦.微小RNA与表观遗传调控:肿瘤治疗新策略[J].医学研究生学报,2011,24(1):92-95.
[20]Wu H, Liu C, Yang Q, et al. MIR145-3p promotes autophagy and enhances bortezomib sensitivity in multiple myeloma by targeting HDAC4[J]. Autophagy, 2020,16(4):683-697.
[21]Huang J, Zhao L, Fan Y, et al. The microRNAs miR-204 and miR-211 maintain joint homeostasis and protect against osteoarthritis progression[J]. Nat Commun, 2019,10(1):2876.
[22]Palma CA, Al Sheikha D, Lim TK, et al. MicroRNA-155 as an inducer of apoptosis and cell differentiation in Acute Myeloid Leukaemia[J]. Mol Cancer, 2014,13:79.
[23]Ju S, Liang Z, Li C, et al. The effect and mechanism of miR-210 in down-regulating the autophagy of lung cancer cells[J]. Pathol Res Pract, 2019,215(3):453-458.
[24]Zhang X, Fernández-Hernando C. miR-33 Regulation of Adaptive Fibrotic Response in Cardiac Remodeling[J]. Circ Res, 2017,120(5):753-755.
[25]Panico C, Condorelli G. microRNA-132: a new biomarker of heart failure at last?[J]Eur J Heart Fail, 2018,20(1):86-88.
[26]Zhang C, Liao P, Liang R, et al. Epigallocatechin gallate prevents mitochondrial impairment and cell apoptosis by regulating miR-30a/p53 axis[J]. Phytomedicine, 2019,61:152845.
[27]Roman-Gomez J, Agirre X, Jiménez-Velasco A, et al. Epigenetic regulation of microRNAs in acute lymphoblastic leukemia[J]. J Clin Oncol, 2009,27(8):1316-1322.
[28]Ortiz IMDP, Barros-Filho MC, Dos Reis MB, et al. Loss of DNA methylation is related to increased expression of miR-21 and miR-146b in papillary thyroid carcinoma[J]. Clin Epigenetics, 2018,10(1):144.
[29]Vera O, Jimenez J, Pernia O, et al. DNA Methylation of miR-7 is a Mechanism Involved in Platinum Response through MAFG Overexpression in Cancer Cells[J]. Theranostics, 2017,7(17):4118-4134.
[30]YanHua W, YinJu H, Hui Z, et al. DNA Hypomethylation of miR-30a Mediated the Protection of Hypoxia Postconditioning Against Aged Cardiomyocytes Hypoxia/Reoxygenation Injury Through Inhibiting Autophagy[J]. Circ J, 2020,84(4):616-625.
[31]Wang LA, Nguyen DH, Mifflin SW, et al. CRHR2 (Corticotropin-Releasing Hormone Receptor 2) in the Nucleus of the Solitary Tract Contributes to Intermittent Hypoxia-Induced Hypertension[J]. Hypertension, 2018,72(4):994-1001.
[32]Crunkhorn S. Cardiovascular disease: CRHR2 blockade prevents heart failure[J]. Nat Rev Drug Discov, 2017,16(8):530.
[33]Basman C, Agrawal P, Knight R, et al. Cardioprotective Utility of Urocortin in Myocardial Ischemia-Reperfusion Injury: Where do We Stand?[J] Curr Mol Pharmacol, 2018,11(1):32-38.
[34]Lagranha CJ, Deschamps A, Aponte A, et al. Sex differences in the phosphorylation of mitochondrial proteins result in reduced production of reactive oxygen species and cardioprotection in females[J]. Circ Res, 2010,106(11):1681-1691.
[35]Cong B, Zhu X, Cao B, et al. Estrogens protect myocardium against ischemia/reperfusion insult by up-regulation of CRH receptor type 2 in female rats[J]. Int J Cardiol, 2013,168(5):4755-4760.
[36]Cong B, Xu Y, Sheng H, et al. Cardioprotection of 17β-estradiol against hypoxia/reoxygenation in cardiomyocytes is partly through up-regulation of CRH receptor type 2[J]. Mol Cell Endocrinol, 2014,382(1):17-25.
[37]Singh RM, Emanuel C, Constantinos P, et al. Protein kinase C and cardiac dysfunction: a review[J]. Heart Fail Rev, 2017,22(6):843-859.
[38]Patterson AJ, Daliao X, Fuxia X, et al. Hypoxia-derived oxidative stress mediates epigenetic repression of PKCε gene in foetal rat hearts[J]. Cardiovasc Res, 2012,93(2):843-859.
[39]Patterson AJ, Chen M, Xue Q, et al. Chronic prenatal hypoxia induces epigenetic programming of PKC{epsilon} gene repression in rat hearts[J]. Circ Res, 2010,107(3):365-373.
[40]Zhang HT, Xue JH, Zhang ZW, et al. Cold-inducible RNA-binding protein inhibits neuron apoptosis through the suppression of mitochondrial apoptosis[J]. Brain Res, 2015,1622: 474-483.
[41]Liu Y, Xing J, Zhang H, et al. Chronic hypoxia-induced Cirbp hypermethylation attenuates hypothermic cardioprotection via down-regulation of ubiquinone biosynthesis[J]. Sci Transl Med, 2019,11(489):eaat8406.
[42]Bliksen M, Baysa A, Eide L, et al. Mitochondrial DNA damage and repair during ischemia-reperfusion injury of the heart[J]. Mol Cell Cardiol, 2015,78:9-22.
[43]Yue RC, Xia XW, Jiang JH, et al. Mitochondrial DNA oxidative damage contributes to cardiomyocyte ischemia/reperfusion-injury in rats: cardioprotective role of lycopene[J].Cell Physio, 2015,230(9): 2128-2141.
[44]Di Salvo TG, Haldar SM. Epigenetic mechanisms in heart failure pathogenesis. Circ Heart Fail[J]. United States,2014, 7(5): 850-863.

相似文献/References:

[1]庄 微综述,刘挺松审校.晚期糖基化终末产物受体在心血管疾病中的研究概况[J].医学研究与战创伤救治(原医学研究生学报),2014,16(06):629.[doi:10.3969/j.issn.1672-271X.2014.06.021]
[2]邸婷婷综述,卞涛审校.DNA甲基化在COPD发病机制中的研究进展[J].医学研究与战创伤救治(原医学研究生学报),2018,20(06):614.[doi:10.3969/j.issn.1672-271X.2018.06.012]

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2020-12-01