论 著 (临床研究)

急性缺血性脑卒中心率变异性降低相关因素分析

杨玉青,王欣彤,江磊磊,龚帆影,杜新芝

[摘要] 目的 探讨急性缺血性脑卒中(AIS)心率变异性降低(HRV)的相关因素及 HRV 降低对心律失常的影响。 方法 回顾性分析 2017 年 1 月 -2020 年 1 月南京中医药大学附属医院收治的 150 例首次 AIS 患者临床资料,收集并记录动态心电图 HRV 时域参数,据 24 h 全部窦性搏动 (R-R)间期标准差(SDNN)是否<100ms 分为 2 组;其中 71 例 SDNN<100 ms 为观察组,79 例 SDNN>100 ms 为对照组,对比分析 HRV 降低的相关因素及对心律失常的影响。 结果 与对照组相比,观察组 2型糖尿病(T2DM) [34(47.9) vs 20(25.3),P=0.004]、吸烟[19(26.8) vs 34(43.0),P=0.037]、非持续性室性心动过速(NVST)[4(5.6) vs 0(0),P=0.048]发生率较高,糖化血红蛋白(HbA1c)[6.7(5.9~8.6) vs 6.0(5.6~7.0),P=0.007]水平更高。HRV 时域参数 SDNN-index[37(29~43) vs 56(49~72),P<0.001]、三角指数[17(14~19) vs 25(23~30),P<0.001]、rMSSD[17(12~28) vs 25(13~47),P=0.007]及 pNN50[4(0~14) vs 16(7~35),P<0.001]均较对照组降低。2 组间脑梗死面积分级和脑梗死定位差异无统计学意义(P>0.05)。Spearman 相关分析显示 SDNN(r=-0.215,P=0.008)、SDNN-index(r=-0.199,P=0.015)及三角指数(r=-0.207,P=0.011)与 HbA1c 呈负相关;SDNN 与 NVST 发生呈负相关(r=-0.164,P=0.045)。 结论 T2DM与 AIS 自主神经损伤相关,SDNN降低则 NVST发生率增加,因此在治疗 AIS 原发病的同时,需积极治疗合并症,预防不良心血管事件的发生。

[关键词] 急性缺血性脑卒中;心率变异性;心律失常;2型糖尿病

[中图分类号] R444 [文献标志码] A [文章编号] 1672-271X(2022)03-0248-05

[DOI] 10.3969/j.issn.1672-271X.2022.03.005

The related factors of reduced heart rate variability in patients with acute ischemic stroke

YANG Yu-qing¹, WANG Xin-tong², JIANG Lei-lei¹, GONG Fan-ying¹, DU Xin-zhi¹
(1. Department of Functional Examination, 2. Department of Neurology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, Jiangsu, China)

[Abstract] Objective To identify heart rate variability (HRV) related factors and its impact on arrhythmic risk in acute ischemic stroke (AIS) patients. Methods Time-domain HRV parameters were retrospectively collected from 150 first-time AIS patients who were admitted to Affiliated Hospital of Nanjing University of Chinese Medicine from January, 2017 to January, 2020. According to the value of SDNN on 24-hour Holter, all patients were assigned into observation group (SDNN<100 ms, n=71) or control group (SDNN>100 ms, n=79). The general clinical data, ischemic stroke localization and size as well as cardiac enzyme and arrhythmias were observed. **Results** Compared with the control group, the patients in the observation group suffered more from type 2 diabetes mellitus (T2DM) [34(47.9) vs 20(25.3), P=0.004] with higher level of glycosylated hemoglobin (HbA1c) [6.7(5.9-8.6) vs 6.0(5.6-7.0), P=0.007] and cigarette smoking [19(26.8) vs 34(43.0), P=0.037], as well as non-sustained ventricular tachycardia (NVST) [4(5.6) vs 0(0), P=0.048]. The time-domain HRV parameters including SDNN-index [37(29-43) vs 56(49-72), P<0.001], triangular index [17(14-19) vs 25(23-30), P<0.001], rMSSD [17(12-28) vs 25(13-47), P=0.007] and pNN50 [4(0-14) vs 16(7-35), P<0.001] were lower in the observation group than that in the control group. Spearman correlation analysis showed that the time-domain HRV parameters including SDNN (r = -0.215, P = 0.008), SDNN-index (r = -0.199, P = 0.008) (0.015), and triangular index (r = -0.207, P = 0.011) were negatively associated with the level of HbA1c. And SDNN was negatively related with NVST (r=-0.164, P=0.045). There was no significant correlation between time-domain HRV parameters and ischemic stroke localization and size (P>0.05). Conclusion T2DM may worsen autonomic neurological injury following AIS. To preventing adverse cardiovascular events, combination therapies may need for the management of AIS and its comorbidities.

基金项目:江苏省中医药管理局科技项目(JD2019SZ02) 作者单位:210029 南京,南京中医药大学附属医院功能检查科(杨 玉青、江磊磊、龚帆影、杜新芝),脑病中心(王欣彤)

[Key words] acute ischemic stroke; heart rate variability; arrhythmia; type 2 diabetes mellitus

0 引 言

急性缺血性脑卒中(acute ischemic stroke, AIS) 是脑卒中的常见类型,约占我国脑卒中的60%~80%, 致残、致死率高[1]。AIS与自主神经(autonomic nervous system, ANS) 功能关系错综复杂。一方面, AIS 可使中枢 ANS 受损;另一方面,心脑血管危险因 素如高龄、高血压、2型糖尿病均可影响 ANS 功能[2]。 心率变异性(heart rate variability, HRV)是现用于评 估、监测机体 ANS 功能最简便的方法。研究认为 24 h 全部窦性搏动(R-R)间期标准差(SDNN)<100 ms 是 HRV 降低的默认指标,提示交感神经张力增高,常 用于预测不良心脑血管事件的发生和发展[3]。尽管 众多研究表明 AIS 常伴有 HRV 降低,与预后不良相 关[4]。然而 AIS 造成 HRV 降低的原因仍不清楚。因 此本研究拟探讨 AIS 患者 HRV 下降的相关因素,以 便更好了解 ANS 功能紊乱的病理生理,为进一步临 床施治提供理论依据。

1 资料与方法

1.1 研究对象 回顾性分析 2017 年 1 月 - 2020 年 1 月 我院收治的首次 AIS 患者 150 例临床资料,其中男 106 例,女46例,年龄66(57~75)岁。据患者入院时动态心 电图 HRV 时域参数 SDNN 是否<100 ms 分为观察组 (SDNN<100 ms) 71 例和对照组(SDNN>100 ms) 79 例。观察组:男44例,女27例,年龄为66(59~72)岁, AIS 距 24 h 动态心电图(Holter)检测时间为 7(5~10) d;对照组:男60例,女19例,年龄为66(56~79)岁,AIS 距 Holter 检测时间为 8(6~9)d。纳入标准:①满足《中 国急性缺血性脑卒中诊治指南 2018》制定的 AIS 诊断 标准:②经头部 MRI/CT 检查证实为 AIS:③病例资料 完整。排除标准:①出血性中风、颅内感染、肿瘤等其 他原因导致的神经系统病变;②心肌梗死病史、心脏手 术史、严重心力衰竭;③严重肝肾功能不全;④发热、缺 氧或其他原因导致血流动力学紊乱: ⑤持续性房颤。 本研究获医院伦理委员会批准(批准号:2021NL-122-01),所有患者均签署知情同意书。

1.2 方法

- 1.2.1 一般临床资料的收集 通过电子病例系统详细记录患者性别、年龄等一般资料,既往高血压史、糖尿病史、冠心病史、吸烟饮酒史等常见危险因素。采集三酰甘油(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)、HbA1c(%)、肌酸激酶同工酶(CK-MB)、乳酸脱氢酶(LDH)等实验室指标。
- 1.2.2 观察指标 所有患者接受 Mortara 3 导同步 动态心电图仪检查,分析长时程(24 h) HRV 时域

参数,记录心律失常发生率。①HRV 时域参数包括 以下指标:SDNN(ms)是指 24 h 全部窦性搏动(R-R) 间期标准差:SDNN-Index(ms)是指每5 min 窦性搏动 (R-R)间期标准差的均值;rMSSD 是指全程相邻窦性 搏动(R-R)间期差值的均方;pNN50 是指相邻窦性搏 动(R-R)间期之差>50 ms 的心搏数占总心搏数的百 分比,以%表示,三角指数指全程 R-R 间期总数与最 大 R-R 间期总数的比值。其中 SDNN、SDNN-Index、 三角指数降低提示交感神经活性增强:pNN50、rMSSD 降低与迷走神经功能降低有关[5]。②心律失常主要 包括:频发房性早搏:24 h 内房性早搏大于 300 次;房 性心动过速:3个以及3个以上房性早搏连续出现; 频发室性早搏:24 h 内室性早搏大于500次;非持续 性室性心动过速(NVST):3个以及3个以上室性早 搏连续出现,持续小于 30 s;室内传导阻滞包括完全 性左、右束支传导阻滞,以及其他 QRS 波时限超过 120 ms 的情况^[6]。③ST-T 改变包括病程中出现的 ST 段下移、抬高,T波倒置、低平。

- 1.2.3 脑梗死面积分级及定位 ①依据头颅 MRI,脑梗死面积分为 4 级:大面积脑梗死指脑梗死面积超过 1 个脑叶或 50 mm 以上;中面积脑梗死指病灶局限一个脑叶,梗死面积 31~50 mm;16~30 mm 为小面积梗死;<15 mm 为腔隙性脑梗死。②脑梗死定位,依据梗死部位分为半球梗死(左侧、右侧、双侧)和脑干梗死
- 1.3 统计学分析 采用 SPSS 22.0 统计分析软件对数据进行处理,计数资料以 n(%)表示,使用卡方检验;计量资料符合正态分布,以均数±标准差(\bar{x} ±s)表示,行t/t'检验;非正态数据使用中位数(四分位间距) [M(P25~P75)]显示,行非参数检验;影响因素行Spearman 相关分析;以 P \leq 0.05 为差异有统计学意义。

2 结 果

- **2.1** 一般临床资料的比较 观察组较对照组 T2DM 发生率高、吸烟人数多,HbA1c 水平高,差异 具有统计学意义 (P<0.05);2 组患者年龄、性别、SBP、DBP、TG、HDL-C、LDL-C、CK-MB、LDH、高血压 史和冠心病史、饮酒史比较,差异无统计学意义 (P>0.05)。 见表 1。
- 2.2 HRV 时域参数及心律失常发生率的比较 2 组患者 AIS 距 Holter 检测时间比较差异无统计学意义(P>0.05);与对照组相比,观察组 SDNN、SDNN-index、三角指数、rMSSD、pNN50 均明显降低,差异有统计学意义(P<0.01)。观察组较对照组平均心率快、NVST 发生率较高,差异有统计学意义(P<0.05);频发房性及室性早搏、室内传导阻滞、ST-T改变,差异无统计学意义(P>0.05)。见表 2。

表 1 入组急性缺血性脑卒中患者一般临床资料的比较

指标	对照组(n=79)	观察组(n=71)	t/Z 值	P 值
年龄[M(P25~P75),岁]	66(56~79)	66(59~72)	-	0. 77
性别[男,n(%)]	60(75.9)	44(62.0)	3. 436	0.064
$SBP(\bar{x}\pm s, mmHg)$	154±23	150±23	0. 798	0. 426
$DBP[M(P25 \sim P75),mmHg]$	83(76~90)	80(71~90)	_	0. 19
$TG[M(P25\sim P75),mmol/L]$	1.40(0.93~3.05)	1. 27(1. 04~2. 24)	-	0.48
$HDL-C[M(P25\sim P75),mmol/L]$	1. 24(1. 05~1. 44)	1. 21(1. 02~1. 43)	-	0.897
LDL-C[$M(P25 \sim P75)$, mmol/L]	2.70(2.04~3.31)	2. 68(2. 24~3. 53)	-	0. 257
$HbA1c[M(P25\sim P75),\%]$	$6.0(5.6 \sim 7.0)$	6.7(5.9~8.6)	-	0.007
$CK-MB[M(P25\sim P75),U/L]$	10(7~13)	10(7~12)	-	0. 293
LDH[M(P25~P75),U/L]	165(149~212)	183(149~216)	-	0. 178
高血压[n(%)]	52(65.8)	55(77.5)	2. 478	0. 115
2型糖尿病[n(%)]	20(25.3)	34(47.9)	8. 268	0.004
冠心病[n(%)]	6(7.6)	6(8.5)	0. 037	0. 857
吸烟史[n(%)]	34(43.0)	19(26.8)	4. 336	0. 037
饮酒史[n(%)]	20(25.3)	11(15.5)	2. 201	0. 138

表 2 入组急性缺血性脑卒中患者 HRV 时域参数及心律失常发生率的比较

指标	对照组(n=79)	观察组(n=71)	t/Z 值	P 值
AIS 距 Holter 检测时间[M(P25~P75),d]	8(6~9)	7(5~10)	-	0. 758
平均心率[M(P25~P75),次/min]	64(60~71)	73(69~80)	-	< 0.001
$SDNN[M(P25\sim P75),ms]$	126(111~148)	81(71~90)	-	< 0.001
$SDNN-index[M(P25\sim P75),ms]$	56(49~72)	37(29~43)	-	< 0.001
三角指数[M(P25~P75)]	25(23~30)	17(14~19)	-	< 0.001
rMSSD[M(P25~P75),ms]	25(13~47)	17(12~28)	-	0.007
pNN50[M(P25~P75),%]	16(7~35)	4(0~14)	-	< 0.001
频发房性早搏[n(%)]	10(12.7)	8(11.3)	0.068	0.794
非持续性房速[n(%)]	34(43.0)	30(42.3)	0.009	0. 923
频发室性早搏[n(%)]	5(6.3)	4(5.6)	-	>0.05
非持续性室速[n(%)]	0(0)	4(5.6)	-	0.048
室内传导阻滞[n(%)]	9(11.4)	7(9.9)	0.092	0.761
ST-T 改变[n(%)]	40(50.6)	34(47.9)	0. 113	0.737

- **2.3 脑梗死面积分级和部位的比较** 2 组患者脑梗死面积分级和脑梗死部位差异无统计学意义(P> 0.05),见表 3。
- **2.4 HRV** 相关因素分析 Spearman 相关分析显示,SDNN、SDNN-index、三角指数与 HbA1c 呈负相关(P<0.05);pNN50、rMSSD 与年龄呈正相关(P<0.05),pNN50 与 TG 呈负相关(P<0.05);HRV 各时域参数与血压、血脂、脑梗死面积分级及定位均未见相关(P>0.05)。见表 4。
- **2.5 HRV** 与心律失常发生相关分析 Spearman 相关分析显示 SDNN 与 NVST 发生呈负相关(*P*<0.05), SDNN-index、三角指数、rMSSD、pNN50 与 NVST 发生无相关关系(*P*>0.05), 见表 5。

表 3 入组急性缺血性脑卒中患者脑梗死面积分级和脑梗死的比较 [n(%)]

指标	对照组 (n=79)	观察组 (n=71)	Z 值	P 值
脑梗死面积分级			2. 757	0. 431
腔隙性脑梗死	31(39.2)	26(36.6)		
小面积脑梗死	32(40.5)	28(39.4)		
中面积脑梗死	10(12.7)	6(8.5)		
大面积脑梗死	6(7.6)	11(15.5)		
脑梗死部位			0.555	0.907
左侧大脑半球	31(39.2)	28(39.4)		
右侧大脑半球	22(27.8)	23(32.4)		
双侧大脑半球	6(7.6)	5(7.0)		
脑干	20(25.3)	15(21.1)		

SDNN		NN	SDNN-index		三角指数		rMSSD		pNN50	
因素	r值	P 值	r值	P 值	r值	P 值	r 值	P值	r值	P 值
年龄	0.009	0. 914	0. 031	0. 708	-0.018	0. 828	0. 244	0.003	0. 223	0.006
SBP	-0. 116	0. 156	-0. 113	0. 17	-0.004	0.96	-0.031	0.71	-0.041	0.621
DBP	0.058	0.48	0. 111	0. 176	0. 134	0. 102	-0.071	0.385	0.001	0. 993
TG	-0.034	0.678	-0.061	0.461	-0.04	0.624	-0. 107	0. 191	-0. 171	0.037
HDL-C	-0.066	0.419	0.014	0.866	-0.086	0. 293	0. 104	0. 203	0.082	0.318
LDL-C	0.033	0.685	0.014	0.865	0.039	0. 637	0.092	0. 26	-0. 142	0.082
HbAc1	-0. 215	0.008	-0. 199	0.015	-0. 207	0.011	-0.023	0.779	-0.067	0.417
脑梗死面积分级	-0.026	0.753	0.016	0.841	-0.06	0.465	-0.012	0.888	-0.067	0.417
脑梗死完位	0.001	0.992	0.012	0.882	0.003	0 974	0.004	0.958	0.052	0.526

表 4 急性缺血性脑卒中患者 HRV 时域参数相关因素分析

表 5 急性缺血性脑卒中患者 HRV 时域参数与 NVST 相关 关系

	NVST			
HRV 时域参数	r值	P 值		
SDNN	-0. 164	0. 045		
SDNN-index	-0.063	0. 447		
三角指数	-0.078	0. 346		
rMSSD	-0.009	0. 912		
pNN50	-0.077	0. 351		

3 讨 论

ANS 是一个多级、多层次的复杂神经回路,分布广泛,通过控制不同的系统调节机体稳态。ANS 功能复杂,直接测量困难,大多是通过诱导自主神经反射,测量靶器官的反应来粗略评估 ANS 的功能,其中最常用指标是 HRV。HRV 通过逐次心博间的差异,将心脏窦房结对 ANS 调节的反应进行了量化,其中时域参数 SDNN、SDNN-Index、三角指数降低提示交感神经活性增强^[3];pNN50、rMSSD 降低则提示迷走神经减弱^[7]。作为无创性 ANS 功能评价指标,HRV 近年来受到临床广泛关注。随着研究的深入,目前 HRV 常用于预测不良心血管事件风险,评价心脑血管疾患的预后^[8-9]。

AIS 是一个复杂的病理生理过程,除典型偏瘫、失语等常见的神经功能缺失症状,急性期可见严重的心律失常或是不可逆的心肌损伤,这与 ANS 功能紊乱密切相关^[8]。研究发现缺血性病变累及 ANS中枢网络及其通路可造成 ANS 功能紊乱^[10];此外, AIS 本身作为"应激源"促发交感神经系统的过度激活,血清儿茶酚胺的大量释放亦是 ANS 功能障碍的原因之一^[2]。同时, ANS 功能障碍与 AIS 的发生

发展密切相关,引起 AIS 的危险因素如高龄、吸烟史、高血压、T2DM、高血脂亦是 ANS 功能障碍的危险因素^[11-12]; ANS 功能异常促使高血压、T2DM 的发展,使得 AIS 风险增加。因此 AIS 与 ANS 功能障碍之间的联系需进一步研究。

现有研究对人类大脑 ANS 功能的偏侧性意见不一^[2],国外研究普遍认为右侧大脑半球梗死更易出现心律失常^[13],右侧大脑中动脉卒中易出现迷走神经功能降低、交感神经亢进^[5,14],而一项国内研究表明 ANS 功能异常与脑梗死部位无关^[15],同样本研究亦未发现差异。入组病例数量,梗死面积的大小、合并症,评价 HRV 的指标不同,均是引起差异的原因。

因此本研究据 SDNN 是否<100 ms 将 150 例首 次 AIS 患者进行分组,分析脑卒中常见危险因素、脑 梗死面积大小及梗死定位对 ANS 的影响。研究发 现观察组(SDNN<100 ms)患者吸烟史、T2DM病史、 HbA1c 水平高于对照组。Spearman 相关分析显示 SDNN、SDNN-Index、三角指数与 HbA1c 负相关。 T2DM 既是 AIS 高危因素,亦影响 ANS 的功能。一 项荷兰的前瞻性研究发现糖尿病前期便出现 HRV 时域参数下降,T2DM下降更显著,HRV时域参数 与 HbA1c、空腹血糖、餐后两小时血糖呈线性负相 关[16]。另外一项为期 60 d 的研究发现,短期使用 胰岛素优化基础降糖方案,可提高 SDNN、 pNN50^[17]。研究显示超过三分之一的脑卒中患者 伴有 T2DM^[18], T2DM 亦是脑卒中的独立危险因 素[11],高血糖通过多种途径致 ANS 损伤[19], ANS 功能障碍亦是 T2DM 的常见并发症,因此在研究 AIS 自主神经功能障碍时,需充分评估 T2DM 对结 果的影响。有研究认为 AIS 后 1 个月内的死亡并非 是神经源性^[20],可能与 ANS 功能障碍,儿茶酚胺大量释放引起的恶性心律失常、心源性猝死有关^[5]。在本研究中观察组 NVST 发生率高于对照组,Spearman 相关分析表明 NVST 发生率与 SDNN 呈负相关,进一步认证了 HRV 下降与 AIS 预后不良有关。

本研究不足之处:为回顾性研究,HRV 数据大都是 AIS 入院 15 d 内的获得,急性期各种治疗措施包括镇静类药物的使用对研究的影响是未知的。大部分患者慢性疾病用药史比较复杂,对结果的影响也是不可控的。与目前大部分研究类似,本研究未能对 AIS 受累部位进行精确分类,因此多部位脑梗对结果的影响是未知的。

综上所述,T2DM 是 AIS 自主神经损伤的相关 因素,HbA1c 与 SDNN、SDNN-Index、三角指数呈负 相关。SDNN下降与 NVST 的发生率增加相关,提 示临床施治过程中,需充分考虑 T2DM 等因素对 ANS 损伤的影响,预防不良心血管事件的发生。

【参考文献】

- [1] 彭 斌, 吴 波. 中国急性缺血性脑卒中诊治指南 2018[J]. 中华神经科杂志,2018,51(9):666-682.
- [2] Carandina A, Lazzeri G, Villa D, et al. Targeting the Autonomic Nervous System for Risk Stratification, Outcome Prediction and Neuromodulation in Ischemic Stroke [J]. Int J Mol Sci, 2021, 22 (5):2357.
- [3] Scherbakov N, Barkhudaryan A, Ebner N, et al. Early rehabilitation after stroke: relationship between the heart rate variability and functional outcome [J]. ESC Heart Fail, 2020, 7 (5): 2983-2991.
- [4] Zhao M, Guan L, Wang Y. The Association of Autonomic Nervous System Function With Ischemic Stroke, and Treatment Strategies [J]. Front Neurol, 2019, 10:1411.
- [5] Constantinescu V, Matei D, Cuciureanu D, et al. Cortical modulation of cardiac autonomic activity in ischemic stroke patients
 [J]. Acta Neurol Belg, 2016, 116(4):473-480.
- [6] 郭继鸿, 王思让, 谭学瑞, 等. 动态心电图报告规范专家共识(2019)[J]. 实用心电学杂志,2019, 28(6):381-386.
- [7] Constantinescu V, Matei D, Costache V, et al. Linear and nonlinear parameters of heart rate variability in ischemic stroke patients[J]. Neurol Neurochir Pol, 2018, 52(2):194-206.

- [8] Guan L, Collet JP, Mazowita G, et al. Autonomic Nervous System and Stress to Predict Secondary Ischemic Events after Transient Ischemic Attack or Minor Stroke: Possible Implications of Heart Rate Variability [J]. Front Neurol, 2018, 9:90.
- [9] 郑毅敏,张 帅,王燕华,等.针刺治疗对原发性高血压患者血压变异性和心率变异性的影响[J].东南国防医药,2016,18(6):563-565,571.
- [10] Benarroch EE. Insular cortex: Functional complexity and clinical correlations [J]. Neurology, 2019, 93(21):932-938.
- [11] 冯 慧, 王晓光, 赵 华, 等. 中老年人群脑卒中风险评估 及其危险因素相关性分析[J]. 中华保健医学杂志, 2021, 23 (5):480-484.
- [12] 张玉敏, 霍丽静, 顾 全,等.急性缺血性脑卒中 CISS 分型与临床特点的研究[J]. 东南国防医药,2017,19(6):629-632.
- [13] Seifert F, Kallmunzer B, Gutjahr I, et al. Neuroanatomical correlates of severe cardiac arrhythmias in acute ischemic stroke [J]. J Neurol, 2015, 262(5):1182-1190.
- [14] Constantinescu V, Arsenescu-Georgescu C, Matei D, et al. Heart rate variability analysis and cardiac dysautonomia in ischemic stroke patients [J]. Clin Neurol Neurosurg, 2019, 186:105528.
- [15] 叶丽莎. 基于动态心电的急性脑梗死患者心脏自主神经功能分析[D]. 上海:上海交通大学,2019.
- [16] Coopmans C, Zhou TL, Henry RMA, et al. Both Prediabetes and Type 2 Diabetes Are Associated With Lower Heart Rate Variability: The Maastricht Study [J]. Diabetes Care, 2020, 43 (5): 1126-1133.
- [17] Mba CM, Nganou-Gnindjio CN, Azabji-Kenfack M, et al. Short term optimization of glycaemic control using insulin improves sympatho-vagal tone activities in patients with type 2 diabetes [J]. Diabetes Res Clin Pract, 2019, 157; 107875.
- [18] Lau LH, Lew J, Borschmann K, et al. Prevalence of diabetes and its effects on stroke outcomes: A meta-analysis and literature review [J]. J Diabetes Investig, 2019, 10(3):780-792.
- [19] Benichou T, Pereira B, Mermillod M, et al. Heart rate variability in type 2 diabetes mellitus: A systematic review and metaanalysis [J]. PLoS One, 2018, 13(4):e0195166.
- [20] Tobaldini E, Sacco RM, Serafino S, et al. Cardiac Autonomic Derangement is Associated with Worse Neurological Outcome in the Very Early Phases of Ischemic Stroke[J]. J Clin Med, 2019, 8(6). doi: 10.3390/jcm8060852.

(收稿日期:2021-11-21; 修回日期:2022-04-14) (责任编辑: 叶华珍: 英文编辑: 朱一超)