[1]Wang JM, Gu Y, Pan CJ, et al. Isolation, culture and identification of human adipose-derived stem cells[J]. Exp Ther Med, 2017, 13(3):1039-1043.
[2]徐竹, 诸葛启钏, 黄李洁. 干细胞3D 支架的研究进展[J].中国生物工程杂志, 2017,37(9): 112-117.
[3]Banihashemi M,Mohkam M,Safari A,et al.Optimization of three dimensional culturing of the HepG2 cell line in fibrin scaffold[J].Hepatitis Monthly, 2015, 15(3): e22731.
[4]Xu Y, Shi T, Xu A, et al. 3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney[J]. J Cell Mol Med, 2016, 20(7):1203-1213.
[5]Lee JH, Han YS, Lee SH. Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells[J]. Biomol Ther (Seoul), 2016, 24(3):260-267.
[6]Miyamoto Y, Ikeuchi M, Noguchi H, et al. Enhanced Adipogenic Differentiation of Human Adipose-Derived Stem Cells in an In Vitro Microenvironment: The Preparation of Adipose-Like Microtissues Using a Three-Dimensional Culture[J]. Cell Med, 2016, 9(1-2): 35-44.
[7]Xie H, Liao N, Lan F, et al. 3D-cultured adipose tissue-derived stem cells inhibit liver cancer cell migration and invasion through suppressing epithelial-mesenchymal transition[J]. Int J Mol Med, 2018, 41(3):1385-1396.
[8]Roxburgh J, Metcalfe AD, Martin YH, et al. The effect of medium selection on adipose-derived stem cell expansion and differentiation: implications for application in regenerative medicine[J]. Cytotechnology, 2016, 68(4): 957-967.
[9]Riis S, Nielsen FM, Pennisi CP, et al. Comparative Analysis of Media and Supplements on Initiation and Expansion of Adipose-Derived Stem Cells[J]. Stem Cells Transl Med, 2016, 5(3):314-324.[1]0]Cheng NC, Hsieh TY, Lai HS, et al. High glucose-induced reactive oxygen species generation promotes stemness in human adipose-derived stem cells[J]. Cytotherapy, 2016, 18(3):371-383.[1]1]Follmar KE, Decroos FC, Prichard HL, et al. Effects of glutamine, glucose, and oxygen concentration on the metabolism and proliferation of rabbit adipose-derived stem cells[J]. Tissue Eng, 2006, 12(12):3525-3533.[1]2]Kyllnen L, Haimi S, Mannerstrm B, et al. Effects of different serum conditions on osteogenic differentiation of human adipose stem cells in vitro[J]. Stem Cell Res Ther, 2013, 4(1):17.[1]3]Phetfong J, Tawonsawatruk T, Seenprachawong K, et al. Re-using blood products as an alternative supplement in the optimisation of clinical-grade adipose-derived mesenchymal stem cell culture[J]. Bone Joint Res, 2017, 6(7):414-422.[1]4]Al-Saqi SH, Saliem M, Asikainen S, et al. Defined serum-free media for in vitro expansion of adipose-derived mesenchymal stem cells[J]. Cytotherapy, 2014, 16(7): 915-926.[1]5]Sato K, Itoh T, Kato T, et al. Serum-free isolation and culture system to enhance the proliferation and bone regeneration of adipose tissue-derived mesenchymal stem cells[J]. In Vitro Cell Dev Biol Anim, 2015, 51(5): 515-529.[1]6]Wan Safwani WK, Wong CW, Yong KW. The effects of hypoxia and serum-free conditions on the stemness properties of human adipose-derived stem cells[J]. Cytotechnology, 2016, 68(5): 1859-1872.[1]7]Kiefer KM, Pluhar GE,Conzemius MG, et al. The Influence of Culture Medium Type on Cellular Phenotype of Canine Adipose Derived Stem Cells[J]. Open J Reg Med,2014, 3 (1):28-37.[1]8]Rylova JV, Andreeva E, Gogvadze VG, et al. Etoposide and hypoxia do not activate apoptosis of multipotent mesenchymal stromal cells in vitro[J]. Bull Exp Biol Med, 2012(154): 141-144.[1]9]Choi JR, Pingguan-Murphy B, Wan Abas WA, et al. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells[J]. Biochem Biophys Res Commun, 2014, 448(2):218-224.
[2]0]Choi JR, Pingguan-Murphy B, Abas WABW, et al. In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis[J]. PLoS One, 2015, 10(1):e0115034.
[2]1]Fotia C, Massa A, Boriani F, et al. Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells[J]. Cytotechnology, 2015, 67(6): 1073-1084.
[2]2]Schiller ZA, Schiele NR, Sims JK, et al. Adipogenesis of adipose-derived stem cells may be regulated via the cytoskeleton at physiological oxygen levels in vitro[J]. Stem Cell Res Ther, 2013, 4(4):79.
[2]3]Linero I, Chaparro O. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration[J]. PLoS One, 2014, 9(9):e107001.
[2]4]Roemeling-van Rhijn M, Mensah FK, Korevaar SS, et al. Effects of Hypoxia on the Immunomodulatory Properties of Adipose Tissue-Derived Mesenchymal Stem cells[J]. Front Immunol, 2013,4:203.
[2]5]Burian E, Probst F, Palla B, et al. Effect of hypoxia on the proliferation of porcine bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells in 2- and 3-dimensional culture[J]. J Craniomaxillofac Surg, 2017, 45(3):414-419.
[2]6]Shell K, Raabe O, Freitag C, et al. Comparison of Equine Adipose Tissue-Derived Stem Cell Behavior and Differentiation Potential Under the Influence of 3% and 21% Oxygen Tension[J]. J Equine Veterinary Sci, 2013, 33 (2):74-82.
[2]7]Kim DS, Lee MW, Lee TH, et al. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells[J]. Biomed Rep, 2017, 6(3):300-306.
[2]8]Najafabadi MM, Bayati V, Orazizadeh M, et al. Impact of Cell Density on Differentiation Efficiency of Rat Adipose-derived Stem Cells into Schwann-like Cells[J]. Int J Stem Cells, 2016, 9(2):213-220.
[2]9]Park JB, Jin SL, Cho BP, et al. Adipose tissue-derived mesenchymal stem cells cultured at high cell density express brain-derived neurotrophic factor and exert neuroprotective effects in a 6-hydroxydopamine rat model of Parkinson′s disease[J]. Genes Genomics, 2015, 37 (2):213-221.
[3]0]Oravcova L, Bohac M,Krajciova L, et al. Effect of Serial Passaging on the Morphology and Biological Characteristics of Human Adipose Tissue-derived Stem Cells[J]. Online J Biol Sci, 2016, 16 (4):145-151.
[3]1]Danisovic L, Oravcova L, Krajciova L, et al. Effect of long-term culture on the biological and morphological characteristics of human adipose tissue-derived stem Cells[J]. J Physiol Pharmacol, 2017, 68(1):149-158.
[3]2]Wang X, Liu C, Li S, et al. Effects of continuous passage on immunomodulatory properties of human adipose-derived stem cells[J]. Cell Tissue Bank, 2015, 16(1):143-150.
[3]3]Safwani WK, Makpol S, Sathapan S, et al. Alteration of gene expression levels during osteogenic induction of human adipose derived stem cells in long-term culture[J]. Cell Tissue Bank, 2013, 14(2):289-301.
[3]4]Faghih H, Javeri A, Taha MF. Impact of early subcultures on stemness, migration and angiogenic potential of adipose tissue-derived stem cells and their resistance to in vitro ischemic condition[J]. Cytotechnology, 2017, 69(6):885-900.
[3]5]Ai G, Shao X, Meng M, et al. Epidermal growth factor promotes proliferation and maintains multipotency of continuous cultured adipose stem cells via activating STAT signal pathway in vitro[J]. Medicine (Baltimore), 2017, 96(30):e7607.
[3]6]Mortimer AE, Faroni A, Kilic MA, et al. Maintenance of a Schwann-Like Phenotype in Differentiated Adipose-Derived Stem Cells Requires the Synergistic Action of Multiple Growth Factors[J]. Stem Cells Int,2017,2017:1479137.
[3]7]Khan S, Villalobos MA, Choron RL, et al. Fibroblast growth factor and vascular endothelial growth factor play a critical role in endotheliogenesis from human adipose-derived stem cells[J]. J Vasc Surg,2017,65(5):1483-1492.
[3]8]Zarychta-Wis'niewska W, Burdzinska A, Kulesza A, et al. Bmp-12 activates tenogenic pathway in human adipose stem cells and affects their immunomodulatory and secretory properties[J]. BMC Cell Biol,2017,18(1):13.
[3]9]Chen C, Yan Q, Yan Y, et al. MicroRNA-1 Regulates the Differentiation of Adipose-Derived Stem Cells into Cardiomyocyte-Like Cells[J]. Stem Cells International, 2018, 2018:7494530.
[4]0]Aji K, Zhang Y, Aimaiti A, et al. MicroRNA-145 regulates the differentiation of human adipose-derived stem cells to smooth muscle cells via targeting Krüppel-like factor 4[J]. Mol Med Rep, 2017, 15(6):3787-3795.
[4]1]Mazzu YZ, Hu Y, Soni RK, et al. miR-193b-Regulated Signaling Networks Serve as Tumor Suppressors in Liposarcoma and Promote Adipogenesis in Adipose-Derived Stem Cells[J]. Cancer Res, 2017, 77(21):5728-5740.
[4]2]Morsczeck C, Reck A, Reichert TE. WNT3A and the induction of the osteogenic differentiation in adipose tissue derived mesenchymal stem cells[J]. Tissue Cell, 2017, 49(4):489-494.
[4]3]Sandel DA, Liu M, Ogbonnaya N, et al. Notch3 is involved in adipogenesis of human adipose-derived stromal/stem cells[J]. Biochimie, 2018, 150:31-36.
[1]袁 波.医院加强研究生教学工作的实践与体会[J].医学研究与战创伤救治(原医学研究生学报),2012,14(01):89.
[2]金长鑫,吴琼,刘烨,等.富血小板血浆凝胶联合脂肪干细胞促进大鼠创面修复的实验研究[J].医学研究与战创伤救治(原医学研究生学报),2016,18(04):349.[doi:10.3969/j.issn.1672-271X.2016.04.004]
JIN Chang-xin,WU Qiong,LIU Ye,et al.The reseach of platelet rich plasma gel combined with adipose-derived stem cells in repairing soft tissue wounds in rats[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2016,18(01):349.[doi:10.3969/j.issn.1672-271X.2016.04.004]