|本期目录/Table of Contents|

[1]刘琴,陈芳,朱以良综述,等.脂肪干细胞培养研究进展[J].医学研究与战创伤救治(原医学研究生学报),2019,21(01):69-73.[doi:10.3969/j.issn.1672-271X.2019.01.016]
 LIU Qin,CHEN Fang,ZHU Yi-liang reviewing,et al.Cultivation of adipose-derived stem cells: research progress[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2019,21(01):69-73.[doi:10.3969/j.issn.1672-271X.2019.01.016]
点击复制

脂肪干细胞培养研究进展()

《医学研究与战创伤救治》(原医学研究生学报)[ISSN:1672-271X/CN:32-1713/R]

卷:
第21卷
期数:
2019年01期
页码:
69-73
栏目:
综述
出版日期:
2019-01-20

文章信息/Info

Title:
Cultivation of adipose-derived stem cells: research progress
作者:
刘琴 陈芳 朱以良综述张宜审校
作者单位:430070武汉, 中部战区总医院医学实验科(刘琴、陈芳、朱以良、张宜)
Author(s):
LIU Qin CHEN Fang ZHU Yi-liang reviewing ZHANG Yi checking
(Department of Medical Experiments, Central Theater General Hospital of Chinese People’s Liberation Army, Wuhan 430070, Hubei, China)
关键词:
脂肪干细胞培养影响因素
Keywords:
adipose-derived stem cells cultivation factors
分类号:
R392.33
DOI:
10.3969/j.issn.1672-271X.2019.01.016
文献标志码:
A
摘要:
脂肪干细胞因其诸多优势被广泛应用到再生医学中,高质量的脂肪干细胞是其应用到再生医学上的前提。而培养条件和增殖分化相关的分子调控是得到高质量脂肪干细胞的关键。文章主要对培养条件如培养方式、培养液的种类、血清、氧浓度、细胞接种密度、细胞代数等以及增殖分化相关分子调控如生长因子、MicroRNAs、Wnt/Notch信号通路等方面对脂肪干细胞生物学特性的影响进行综述。
Abstract:
Adipose-derived stem cells(ASCs) as potential seeded cells have been widely used in regenerative medicine because of their many advantages. High-quality ASCs is an important premise for their application in regenerative medicine. However, culture conditions and molecular regulation of proliferation and differentiation are the key to obtaining high-quality ASCs. In this review, the effects of culture conditions such as culture mode, culture medium type, serum, oxygen concentration, cell inoculation density, cell passages, and molecular regulation of proliferation and differentiation such as growth factor, microRNAs, Wnt/Notch signaling pathway on the biological characteristics of ASCs were reviewed in order to provide theoretical basis for obtaining high-quality ASCs.

参考文献/References:

[1]Wang JM, Gu Y, Pan CJ, et al. Isolation, culture and identification of human adipose-derived stem cells[J]. Exp Ther Med, 2017, 13(3):1039-1043.
[2]徐竹, 诸葛启钏, 黄李洁. 干细胞3D 支架的研究进展[J].中国生物工程杂志, 2017,37(9): 112-117.
[3]Banihashemi M,Mohkam M,Safari A,et al.Optimization of three dimensional culturing of the HepG2 cell line in fibrin scaffold[J].Hepatitis Monthly, 2015, 15(3): e22731.
[4]Xu Y, Shi T, Xu A, et al. 3D spheroid culture enhances survival and therapeutic capacities of MSCs injected into ischemic kidney[J]. J Cell Mol Med, 2016, 20(7):1203-1213.
[5]Lee JH, Han YS, Lee SH. Long-Duration Three-Dimensional Spheroid Culture Promotes Angiogenic Activities of Adipose-Derived Mesenchymal Stem Cells[J]. Biomol Ther (Seoul), 2016, 24(3):260-267.
[6]Miyamoto Y, Ikeuchi M, Noguchi H, et al. Enhanced Adipogenic Differentiation of Human Adipose-Derived Stem Cells in an In Vitro Microenvironment: The Preparation of Adipose-Like Microtissues Using a Three-Dimensional Culture[J]. Cell Med, 2016, 9(1-2): 35-44.
[7]Xie H, Liao N, Lan F, et al. 3D-cultured adipose tissue-derived stem cells inhibit liver cancer cell migration and invasion through suppressing epithelial-mesenchymal transition[J]. Int J Mol Med, 2018, 41(3):1385-1396.
[8]Roxburgh J, Metcalfe AD, Martin YH, et al. The effect of medium selection on adipose-derived stem cell expansion and differentiation: implications for application in regenerative medicine[J]. Cytotechnology, 2016, 68(4): 957-967.
[9]Riis S, Nielsen FM, Pennisi CP, et al. Comparative Analysis of Media and Supplements on Initiation and Expansion of Adipose-Derived Stem Cells[J]. Stem Cells Transl Med, 2016, 5(3):314-324.[1]0]Cheng NC, Hsieh TY, Lai HS, et al. High glucose-induced reactive oxygen species generation promotes stemness in human adipose-derived stem cells[J]. Cytotherapy, 2016, 18(3):371-383.[1]1]Follmar KE, Decroos FC, Prichard HL, et al. Effects of glutamine, glucose, and oxygen concentration on the metabolism and proliferation of rabbit adipose-derived stem cells[J]. Tissue Eng, 2006, 12(12):3525-3533.[1]2]Kyllnen L, Haimi S, Mannerstrm B, et al. Effects of different serum conditions on osteogenic differentiation of human adipose stem cells in vitro[J]. Stem Cell Res Ther, 2013, 4(1):17.[1]3]Phetfong J, Tawonsawatruk T, Seenprachawong K, et al. Re-using blood products as an alternative supplement in the optimisation of clinical-grade adipose-derived mesenchymal stem cell culture[J]. Bone Joint Res, 2017, 6(7):414-422.[1]4]Al-Saqi SH, Saliem M, Asikainen S, et al. Defined serum-free media for in vitro expansion of adipose-derived mesenchymal stem cells[J]. Cytotherapy, 2014, 16(7): 915-926.[1]5]Sato K, Itoh T, Kato T, et al. Serum-free isolation and culture system to enhance the proliferation and bone regeneration of adipose tissue-derived mesenchymal stem cells[J]. In Vitro Cell Dev Biol Anim, 2015, 51(5): 515-529.[1]6]Wan Safwani WK, Wong CW, Yong KW. The effects of hypoxia and serum-free conditions on the stemness properties of human adipose-derived stem cells[J]. Cytotechnology, 2016, 68(5): 1859-1872.[1]7]Kiefer KM, Pluhar GE,Conzemius MG, et al. The Influence of Culture Medium Type on Cellular Phenotype of Canine Adipose Derived Stem Cells[J]. Open J Reg Med,2014, 3 (1):28-37.[1]8]Rylova JV, Andreeva E, Gogvadze VG, et al. Etoposide and hypoxia do not activate apoptosis of multipotent mesenchymal stromal cells in vitro[J]. Bull Exp Biol Med, 2012(154): 141-144.[1]9]Choi JR, Pingguan-Murphy B, Wan Abas WA, et al. Impact of low oxygen tension on stemness, proliferation and differentiation potential of human adipose-derived stem cells[J]. Biochem Biophys Res Commun, 2014, 448(2):218-224.
[2]0]Choi JR, Pingguan-Murphy B, Abas WABW, et al. In situ normoxia enhances survival and proliferation rate of human adipose tissue-derived stromal cells without increasing the risk of tumourigenesis[J]. PLoS One, 2015, 10(1):e0115034.
[2]1]Fotia C, Massa A, Boriani F, et al. Hypoxia enhances proliferation and stemness of human adipose-derived mesenchymal stem cells[J]. Cytotechnology, 2015, 67(6): 1073-1084.
[2]2]Schiller ZA, Schiele NR, Sims JK, et al. Adipogenesis of adipose-derived stem cells may be regulated via the cytoskeleton at physiological oxygen levels in vitro[J]. Stem Cell Res Ther, 2013, 4(4):79.
[2]3]Linero I, Chaparro O. Paracrine effect of mesenchymal stem cells derived from human adipose tissue in bone regeneration[J]. PLoS One, 2014, 9(9):e107001.
[2]4]Roemeling-van Rhijn M, Mensah FK, Korevaar SS, et al. Effects of Hypoxia on the Immunomodulatory Properties of Adipose Tissue-Derived Mesenchymal Stem cells[J]. Front Immunol, 2013,4:203.
[2]5]Burian E, Probst F, Palla B, et al. Effect of hypoxia on the proliferation of porcine bone marrow-derived mesenchymal stem cells and adipose-derived mesenchymal stem cells in 2- and 3-dimensional culture[J]. J Craniomaxillofac Surg, 2017, 45(3):414-419.
[2]6]Shell K, Raabe O, Freitag C, et al. Comparison of Equine Adipose Tissue-Derived Stem Cell Behavior and Differentiation Potential Under the Influence of 3% and 21% Oxygen Tension[J]. J Equine Veterinary Sci, 2013, 33 (2):74-82.
[2]7]Kim DS, Lee MW, Lee TH, et al. Cell culture density affects the stemness gene expression of adipose tissue-derived mesenchymal stem cells[J]. Biomed Rep, 2017, 6(3):300-306.
[2]8]Najafabadi MM, Bayati V, Orazizadeh M, et al. Impact of Cell Density on Differentiation Efficiency of Rat Adipose-derived Stem Cells into Schwann-like Cells[J]. Int J Stem Cells, 2016, 9(2):213-220.
[2]9]Park JB, Jin SL, Cho BP, et al. Adipose tissue-derived mesenchymal stem cells cultured at high cell density express brain-derived neurotrophic factor and exert neuroprotective effects in a 6-hydroxydopamine rat model of Parkinson′s disease[J]. Genes Genomics, 2015, 37 (2):213-221.
[3]0]Oravcova L, Bohac M,Krajciova L, et al. Effect of Serial Passaging on the Morphology and Biological Characteristics of Human Adipose Tissue-derived Stem Cells[J]. Online J Biol Sci, 2016, 16 (4):145-151.
[3]1]Danisovic L, Oravcova L, Krajciova L, et al. Effect of long-term culture on the biological and morphological characteristics of human adipose tissue-derived stem Cells[J]. J Physiol Pharmacol, 2017, 68(1):149-158.
[3]2]Wang X, Liu C, Li S, et al. Effects of continuous passage on immunomodulatory properties of human adipose-derived stem cells[J]. Cell Tissue Bank, 2015, 16(1):143-150.
[3]3]Safwani WK, Makpol S, Sathapan S, et al. Alteration of gene expression levels during osteogenic induction of human adipose derived stem cells in long-term culture[J]. Cell Tissue Bank, 2013, 14(2):289-301.
[3]4]Faghih H, Javeri A, Taha MF. Impact of early subcultures on stemness, migration and angiogenic potential of adipose tissue-derived stem cells and their resistance to in vitro ischemic condition[J]. Cytotechnology, 2017, 69(6):885-900.
[3]5]Ai G, Shao X, Meng M, et al. Epidermal growth factor promotes proliferation and maintains multipotency of continuous cultured adipose stem cells via activating STAT signal pathway in vitro[J]. Medicine (Baltimore), 2017, 96(30):e7607.
[3]6]Mortimer AE, Faroni A, Kilic MA, et al. Maintenance of a Schwann-Like Phenotype in Differentiated Adipose-Derived Stem Cells Requires the Synergistic Action of Multiple Growth Factors[J]. Stem Cells Int,2017,2017:1479137.
[3]7]Khan S, Villalobos MA, Choron RL, et al. Fibroblast growth factor and vascular endothelial growth factor play a critical role in endotheliogenesis from human adipose-derived stem cells[J]. J Vasc Surg,2017,65(5):1483-1492.
[3]8]Zarychta-Wis'niewska W, Burdzinska A, Kulesza A, et al. Bmp-12 activates tenogenic pathway in human adipose stem cells and affects their immunomodulatory and secretory properties[J]. BMC Cell Biol,2017,18(1):13.
[3]9]Chen C, Yan Q, Yan Y, et al. MicroRNA-1 Regulates the Differentiation of Adipose-Derived Stem Cells into Cardiomyocyte-Like Cells[J]. Stem Cells International, 2018, 2018:7494530.
[4]0]Aji K, Zhang Y, Aimaiti A, et al. MicroRNA-145 regulates the differentiation of human adipose-derived stem cells to smooth muscle cells via targeting Krüppel-like factor 4[J]. Mol Med Rep, 2017, 15(6):3787-3795.
[4]1]Mazzu YZ, Hu Y, Soni RK, et al. miR-193b-Regulated Signaling Networks Serve as Tumor Suppressors in Liposarcoma and Promote Adipogenesis in Adipose-Derived Stem Cells[J]. Cancer Res, 2017, 77(21):5728-5740.
[4]2]Morsczeck C, Reck A, Reichert TE. WNT3A and the induction of the osteogenic differentiation in adipose tissue derived mesenchymal stem cells[J]. Tissue Cell, 2017, 49(4):489-494.
[4]3]Sandel DA, Liu M, Ogbonnaya N, et al. Notch3 is involved in adipogenesis of human adipose-derived stromal/stem cells[J]. Biochimie, 2018, 150:31-36.

相似文献/References:

[1]袁 波.医院加强研究生教学工作的实践与体会[J].医学研究与战创伤救治(原医学研究生学报),2012,14(01):89.
[2]金长鑫,吴琼,刘烨,等.富血小板血浆凝胶联合脂肪干细胞促进大鼠创面修复的实验研究[J].医学研究与战创伤救治(原医学研究生学报),2016,18(04):349.[doi:10.3969/j.issn.1672-271X.2016.04.004]
 JIN Chang-xin,WU Qiong,LIU Ye,et al.The reseach of platelet rich plasma gel combined with adipose-derived stem cells in repairing soft tissue wounds in rats[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2016,18(01):349.[doi:10.3969/j.issn.1672-271X.2016.04.004]

备注/Memo

备注/Memo:
基金项目:湖北省卫生和计划生育委员会科研项目(WJ2017H0054)
更新日期/Last Update: 2019-01-20