|本期目录/Table of Contents|

[1]牛冬梅,宋佳希,周万青,等.尿路分离利奈唑胺不敏感粪肠球菌耐药机制及毒力基因研究[J].医学研究与战创伤救治(原医学研究生学报),2022,24(1):23-26.[doi:10.3969/j.issn.1672-271X.2022.01.005]
 NIU Dong-mei,SONG Jia-xi,ZHOU Wan-qing,et al.Resistance mechanism and virulence genes of linezolid insensitive Enterococcus faecalis isolated from urinary tract[J].JOURNAL OF MEDICALRESEARCH —COMBAT TRAUMA CARE,2022,24(1):23-26.[doi:10.3969/j.issn.1672-271X.2022.01.005]
点击复制

尿路分离利奈唑胺不敏感粪肠球菌耐药机制及毒力基因研究()

《医学研究与战创伤救治》(原医学研究生学报)[ISSN:1672-271X/CN:32-1713/R]

卷:
第24卷
期数:
2022年1期
页码:
23-26
栏目:
临床研究
出版日期:
2022-02-20

文章信息/Info

Title:
Resistance mechanism and virulence genes of linezolid insensitive Enterococcus faecalis isolated from urinary tract
作者:
牛冬梅宋佳希周万青刘兴全
作者单位:210001南京,南京中医药大学附属南京中医院检验科(牛冬梅、宋佳希、刘兴全);210008 南京,南京大学医学院附属鼓楼医院检验科(周万青)
Author(s):
NIU Dong-mei SONG Jia-xi ZHOU Wan-qing LIU Xing-quan
(1. Department of Clinical Laboratory,Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210001, Jiangsu,China; 2. Department of Clinical Laboratory, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu,China)
关键词:
粪肠球菌利奈唑胺耐药机制毒力基因
Keywords:
E. faecalis linezolid resistant mechanism virulence gene
分类号:
R446.5
DOI:
10.3969/j.issn.1672-271X.2022.01.005
文献标志码:
A
摘要:
目的探讨尿液分离利奈唑胺(LZD)不敏感粪肠球菌耐药机制及毒力基因携带情况。方法收集临床中段尿分离粪肠球菌72株,其中利奈唑胺不敏感和敏感菌株分别为23株和49株。采用微量肉汤稀释法检测菌株对常规药物最低抑菌浓度(MIC);采用E-test复核利奈唑胺MIC。采用PCR法结合Sanger测序技术检测23株利奈唑胺不敏感粪肠球菌optrA基因、cfr基因及23S rRNA V区。采用PCR法检测肠球菌6种毒力基因cylA、esp、asa1、hyl、gelE和agg;统计分析LZD不敏感和敏感菌株毒力基因携带情况及差异。结果23株利奈唑胺不敏感粪肠球菌对利奈唑胺MIC分布4~256 μg/mL;其中13株检出optrA基因,其余10株未检出;23株菌未检出23S rRNA V区突变及cfr基因。23株LZD不敏感粪肠球菌中21株检出毒力基因,以asa1基因检出率最高(17/23,73.91%),其次为esp(16/23,69.57%)、cylA(13/23,56.52%)、gelE(10/23,43.48%)和agg(4/23,17.39%),未检出hyl基因;49株尿液分离LZD敏感粪肠球菌中48株检出毒力基因,以asa1基因检出率最高(42/49,85.71%),其次为cylA(39/49,79.59%)、esp(38/49,77.55%)、gelE(35/49,71.43%)和agg(10/49,20.41%),未检出hyl基因。利奈唑胺敏感菌株中cylA和gelE基因检出率均高于不敏感菌株,差异有统计学意义(χ2=4.15,5.22,P<0.05),其余基因检出率在2组间差异无统计学意义(P>0.05)。结论尿液分离利奈唑胺不敏感粪肠球菌中主要由optrA介导耐药;利奈唑胺不敏感粪肠球菌菌株cylA、gelE基因携带率低于敏感菌株。
Abstract:
ObjectiveTo investigate the resistance mechanism and virulence gene of linezolid insensitive Enterococcus faecalis (E. faecalis) isolated from urine.MethodsA total of 72 strains of E. faecalis were isolated from clinical urine samples. Among them, 23 strains were linezolid insensitive and 49 strains were linezolid sensitive. The minimal inhibitory concentration (MIC) of linezolid was checked by E-test. PCR combined with Sanger sequencing technique was used to detect the optrA gene, cfr gene and 23S rRNA V region of the 23 linezolid insensitive E. faecalis strains. Six virulence genes of enterococci including cylA, esp, asa1, hyl, gelE and agg were detected by PCR. And the difference of virulence genes between LZD insensitive and LZD sensitive strains was statistically analyzed.ResultsThe MIC distribution of linezolid was 4-256 μg/mL in 23 strains of linezolid insensitive E. faecalis. OptrA gene was detected in 13 strains, but not in the other 10 strains. 23S rRNA V region mutation and cfr gene were not detected in 23 strains. Among 23 strains of LZD insensitive E. faecalis, 21 strains were detected with virulence genes, of which asa1 gene was the highest (17/23, 73.91%), followed by esp (16/23, 69.57%), cylA (13/23, 56.52%), gelE (10/23, 43.48%) and agg (4/23, 17.39%), and without the expression of hyl gene. Among 49 strains of LZD sensitive E. faecalis, 48 strains were detected with virulence genes, of which asa1 gene was the highest (42/49), followed by cylA (39/49, 79.59%), esp (38/49, 77.55%), gelE (35/49, 71.43%) and agg (10/49, 20.41%). The detection rates of cylA and gelE genes in linezolid sensitive strains were higher than those in insensitive strains (χ2= 4.15, 5.22, P<0.05). There was no significant difference in the detection rate of other genes between the two groups (P>0.05).ConclusionThe resistance of linezolid insensitive E. faecalis isolated from urine is mainly mediated by optrA, and the carrying rate of cylA and gelE in linezolid insensitive strains is lower than that in linezolid sensitive strains.

参考文献/References:

[1]Treitman AN, Yarnold PR, Warren J,et al. Emerging incidence of Enterococcus faecium among hospital isolates (1993 to 2002) [J]. J Clin Microbiol, 2005, 43(1): 462-463.
[2]Fisher K, Phillips C. The ecology, epidemiology and virulence ofEnterococcus[J]. Microbiology (Reading), 2009, 155(Pt 6): 1749-1757.
[3]Zhou W, Zhou H, Sun Y,et al. Characterization of clinical enterococci isolates, focusing on the vancomycin-resistant enterococci in a tertiary hospital in China: based on the data from 2013 to 2018[J]. BMC Infect Dis, 2020, 20(1): 356.
[4]Zhou W, Gao S, Xu H,et al. Distribution of the optrA gene in Enterococcus isolates at a tertiary care hospital in China[J]. J Glob Antimicrob Resist, 2019, 17: 180-186.
[5]Zheng JX, Wu Y, Lin ZW,et al. Characteristics of and virulence factors associated with biofilm formation in clinical Enterococcus faecalis isolates in China[J]. Front Microbiol, 2017, 8: 2338.
[6]Chilambi GS, Nordstrom HR, Evans DR,et al. Evolution of vancomycin-resistant Enterococcus faecium during colonization and infection in immunocompromised pediatric patients[J]. Proc Natl Acad Sci USA, 2020, 117(21): 11703-11714.
[7]Clinical and Laboratory Standards Institute.Performance standards for antimicrobial susceptibility testing. 29th ed. CLSI supplement M100 [S]: Wayne, PA: CLSI, 2019.
[8]周万青, 宋熙晶, 生媛, 等. 多中心耐利奈唑胺凝固酶阴性葡萄球菌耐药机制及同源性分析[J]. 临床检验杂志, 2020, 38(1): 29-33.
[9]Zheng JX, Bai B, Lin ZW,et al. Characterization of biofilm formation by Enterococcus faecalis isolates derived from urinary tract infections in China[J]. J Med Microbiol, 2018, 67(1): 60-67.
[10]牛冬梅, 徐红静, 周万青, 等. 血液分离肠球菌毒力基因及生物膜形成相关性分析[J]. 标记免疫分析与临床, 2019, 26(7): 1105-1109.
[11]Zhou W, Niu D, Cao X,et al. Clonal dissemination of linezolid-resistant Staphylococcus capitis with G2603T mutation in domain V of the 23S rRNA and the cfr gene at a tertiary care hospital in China[J]. BMC Infect Dis, 2015, 15: 97.
[12]高硕, 周万青, 朱宏, 等. 利奈唑胺耐药金黄色葡萄球菌耐药机制分析[J]. 临床检验杂志, 2020, 38(8): 613-616.
[13]Antonelli A, D’Andrea MM, Brenciani A,et al. Characterization of poxtA, a novel phenicol-oxazolidinone-tetracycline resistance gene from an MRSA of clinical origin[J]. J Antimicrob Chemother, 2018, 73(7): 1763-1769.
[14]Paganelli FL, Willems RJ, Leavis HL. Optimizing future treatment of enterococcal infections: attacking the biofilm? [J] Trends Microbiol, 2012, 20(1): 40-49.
[15]Thomas VC, Thurlow LR, Boyle D,et al. Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development[J]. J Bacteriol, 2008, 190(16): 5690-5698.
[16]Van Tyne D, Martin MJ, Gilmore MS. Structure, function, and biology of theEnterococcus faecalis cytolysin[J]. Toxins (Basel), 2013, 5(5):895-911.
[17]Seno Y, Kariyama R, Mitsuhata R, et al. Clinical implications of biofilm formation by Enterococcus faecalis in the urinary tract[J]. Acta Med Okayama, 2005, 59(3):79-87.
[18]朱宏, 高硕, 周辉, 等. 尿路感染中肠球菌耐药性及毒力基因分析[J]. 东南国防医药, 2019, 21(5): 466-469.

相似文献/References:

备注/Memo

备注/Memo:
-
更新日期/Last Update: 2022-02-21